Radiomics Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: Interpretation and Imaging Pitfalls

被引:0
作者
Ioannidis, Georgios S. [1 ]
Joshi, Smriti [2 ]
Kalliatakis, Grigorios [1 ]
Nikiforaki, Katerina [1 ]
Kilintzis, Vassilis [1 ]
Kondylakis, Haridimos [1 ]
Diaz, Oliver [2 ]
Bobowicz, Maciej [3 ]
Lekadir, Karim [2 ]
Marias, Kostas [1 ,4 ]
机构
[1] Fdn Res & Technol Hellas FORTH, Inst Comp Sci, Computat BioMedicine Lab, Iraklion 70013, Greece
[2] Univ Barcelona, Artificial Intelligence Med Lab BCN AIM, Barcelona 08007, Spain
[3] Med Univ Gdansk, Dept Radiol 2, Smoluchowskiego 17, PL-80214 Gdansk, Poland
[4] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71004, Greece
来源
PERVASIVE COMPUTING TECHNOLOGIES FOR HEALTHCARE, PERVASIVEHEALTH 2024, PT I | 2025年 / 611卷
关键词
Breast Cancer; Machine Learning; Radiomics; Kinetic curves; DCE MRI; MRI;
D O I
10.1007/978-3-031-85572-6_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study aims to explore the impact of kinetic enhancement patterns for automated segmentation of dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) breast cancer data in order to predict pathologic complete response to neoadjuvant chemotherapy (pCR). To this end, a publically available dataset (Duke-Breast-Cancer-MRI) was used including 251 patients. A heuristic scheme was introduced to (a) classify each DCE curve over time in the tumor on a voxel basis into 5 categories including type 1 (plateau), 2 (slow washout), 3 (fast washout), 4 (slow persistent enhancement) and 5 (fast persistent enhancement); and (b) to produce accurate regions of interest (ROIs) for the automated prediction of pCR through radiomics using a variety of machine learning (ML) classifiers. ML radiomics were also investigated using the original tumor's annotation (i.e., bounding boxes). The kinetic analysis showed that 60% of the tumor is dominantly described by continuous enhancement voxels, and the performance of pCR classification exhibited a maximum ACC of 57% with both automated and original ROIs.
引用
收藏
页码:340 / 352
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 2023, Breast cancer
[2]   Developing a Prediction Model for Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: A Comparison of Model Building Approaches [J].
Basmadjian, Robert B. ;
Kong, Shiying ;
Boyne, Devon J. ;
Jarada, Tamer N. ;
Xu, Yuan ;
Cheung, Winson Y. ;
Lupichuk, Sasha ;
Quan, May Lynn ;
Brenner, Darren R. .
JCO CLINICAL CANCER INFORMATICS, 2022, 6
[3]   Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI [J].
Caballo, Marco ;
Sanderink, Wendelien B. G. ;
Han, Luyi ;
Gao, Yuan ;
Athanasiou, Alexandra ;
Mann, Ritse M. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (01) :97-110
[4]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[5]   Machine learning prediction of pathological complete response and overall survival of breast cancer patients in an underserved inner-city population [J].
Dell'Aquila, Kevin ;
Vadlamani, Abhinav ;
Maldjian, Takouhie ;
Fineberg, Susan ;
Eligulashvili, Anna ;
Chung, Julie ;
Adam, Richard ;
Hodges, Laura ;
Hou, Wei ;
Makower, Della ;
Duong, Tim Q. .
BREAST CANCER RESEARCH, 2024, 26 (01)
[6]   Dynamic Contrast-Enhanced MRI of the Breast: Quantitative Method for Kinetic Curve Type Assessment [J].
El Khouli, Riham H. ;
Macura, Katarzyna J. ;
Jacobs, Michael A. ;
Khalil, Tarek H. ;
Kamel, Ihab R. ;
Dwyer, Andrew ;
Bluemke, David A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (04) :W295-W300
[7]  
Haberle L., 2018, Ann. Oncol., V29, pviii72, DOI [10.1093/annonc/mdy270.221, DOI 10.1093/ANNONC/MDY270.221]
[8]  
Ioannidis G.S., 2023, 2023 IEEE EMBS SPEC, P121, DOI [10.1109/IEEECONF58974.2023.10404510, DOI 10.1109/IEEECONF58974.2023.10404510]
[9]   Investigating the value of radiomics stemming from DSC quantitative biomarkers in IDH mutation prediction in gliomas [J].
Ioannidis, Georgios S. ;
Pigott, Laura Elin ;
Iv, Michael ;
Surlan-Popovic, Katarina ;
Wintermark, Max ;
Bisdas, Sotirios ;
Marias, Kostas .
FRONTIERS IN NEUROLOGY, 2023, 14
[10]   Quantification and Classification of Contrast Enhanced Ultrasound Breast Cancer Data: A Preliminary Study [J].
Ioannidis, Georgios S. ;
Goumenakis, Michalis ;
Stefanis, Ioannis ;
Karantanas, Apostolos ;
Marias, Kostas .
DIAGNOSTICS, 2022, 12 (02)