An overview of computational methods in single-cell transcriptomic cell type annotation

被引:1
作者
Li, Tianhao [1 ]
Wang, Zixuan [2 ]
Liu, Yuhang [3 ]
He, Sihan [1 ]
Zou, Quan [4 ]
Zhang, Yongqing [1 ]
机构
[1] Chengdu Univ Informat Technol, Sch Comp Sci, 24 Block 1,Xuefu Rd, Chengdu 610225, Peoples R China
[2] Sichuan Univ, Coll Elect & Informat Engn, 24 South Sect 1,1st Ring Rd, Chengdu 610065, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Shahe Campus 4,Sect 2,North Jianshe Rd, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
scRNA-seq; cell type annotation; long-tail distribution; dynamic clustering; continual learning; open-world cell recognition; RNA-SEQ DATA; QUALITY-CONTROL; EXPRESSION; NORMALIZATION; MARKER; ATLAS; CD133;
D O I
10.1093/bib/bbaf207
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rapid accumulation of single-cell RNA sequencing data has provided unprecedented computational resources for cell type annotation, significantly advancing our understanding of cellular heterogeneity. Leveraging gene expression profiles derived from transcriptomic data, researchers can accurately infer cell types, sparking the development of numerous innovative annotation methods. These methods utilize a range of strategies, including marker genes, correlation-based matching, and supervised learning, to classify cell types. In this review, we systematically examine these annotation approaches based on transcriptomics-specific gene expression profiles and provide a comprehensive comparison and categorization of these methods. Furthermore, we focus on the main challenges in the annotation process, especially the long-tail distribution problem arising from data imbalance in rare cell types. We discuss the potential of deep learning techniques to address these issues and enhance model capability in recognizing novel cell types within an open-world framework.
引用
收藏
页数:19
相关论文
共 156 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]  
Abdi H, 2007, ENCY MEASUREMENT STA, P651, DOI DOI 10.4135/9781412952644.NV-3
[3]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[4]   The GTEx Consortium atlas of genetic regulatory effects across human tissues [J].
Aguet, Francois ;
Barbeira, Alvaro N. ;
Bonazzola, Rodrigo ;
Brown, Andrew ;
Castel, Stephane E. ;
Jo, Brian ;
Kasela, Silva ;
Kim-Hellmuth, Sarah ;
Liang, Yanyu ;
Parsana, Princy ;
Flynn, Elise ;
Fresard, Laure ;
Gamazon, Eric R. ;
Hamel, Andrew R. ;
He, Yuan ;
Hormozdiari, Farhad ;
Mohammadi, Pejman ;
Munoz-Aguirre, Manuel ;
Ardlie, Kristin G. ;
Battle, Alexis ;
Bonazzola, Rodrigo ;
Brown, Christopher D. ;
Cox, Nancy ;
Dermitzakis, Emmanouil T. ;
Engelhardt, Barbara E. ;
Garrido-Martin, Diego ;
Gay, Nicole R. ;
Getz, Gad ;
Guigo, Roderic ;
Hamel, Andrew R. ;
Handsaker, Robert E. ;
He, Yuan ;
Hoffman, Paul J. ;
Hormozdiari, Farhad ;
Im, Hae Kyung ;
Jo, Brian ;
Kasela, Silva ;
Kashin, Seva ;
Kim-Hellmuth, Sarah ;
Kwong, Alan ;
Lappalainen, Tuuli ;
Li, Xiao ;
Liang, Yanyu ;
MacArthur, Daniel G. ;
Mohammadi, Pejman ;
Montgomery, Stephen B. ;
Munoz-Aguirre, Manuel ;
Rouhana, John M. ;
Hormozdiari, Farhad ;
Im, Hae Kyung .
SCIENCE, 2020, 369 (6509) :1318-1330
[5]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[6]   The commitment of the human cell atlas to humanity [J].
Amit, Ido ;
Ardlie, Kristin ;
Arzuaga, Fabiana ;
Awandare, Gordon ;
Bader, Gary ;
Bernier, Alexander ;
Carninci, Piero ;
Donnelly, Stacey ;
Eils, Roland ;
Forrest, Alistair R. R. ;
Greely, Henry T. ;
Guigo, Roderic ;
Hacohen, Nir ;
Haniffa, Muzlifah ;
Kirby, Emily Sarah ;
Knoppers, Bartha Maria ;
Kriegstein, Arnold ;
Lein, Ed S. ;
Linnarsson, Sten ;
Majumder, Partha P. ;
Merad, Miriam ;
Meyer, Kerstin ;
Mhlanga, Musa M. ;
Nolan, Garry ;
Ntusi, Ntobeko A. B. ;
Pe'er, Dana ;
Prabhakar, Shyam ;
Raven-Adams, Maili ;
Regev, Aviv ;
Rozenblatt-Rosen, Orit ;
Saha, Senjuti ;
Saltzman, Andrea ;
Shalek, Alex K. ;
Shin, Jay W. ;
Stunnenberg, Henk ;
Teichmann, Sarah A. ;
Tickle, Timothy ;
Villani, Alexandra-Chloe ;
Wells, Christine ;
Wold, Barbara ;
Yang, Huanming ;
Zhuang, Xiaowei .
NATURE COMMUNICATIONS, 2024, 15 (01)
[7]  
Anguita D., 2012, Thekin k-fold cross validation In ESANN, V102, P441
[8]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[9]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[10]  
Auria L., 2008, Support vector machines