Generative artificial intelligence for ophthalmic images: developments, applications and challenges

被引:0
作者
Li, Tingyao [1 ]
Wang, Zheyuan [1 ]
Jiang, Zehua [2 ]
Zhong, Huaiqin [3 ]
Qin, Yiming [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China
[2] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Beijing Visual Sci & Translat Eye Res Inst BERI, Eye Ctr,Sch Clin Med,Tsinghua Med, Beijing, Peoples R China
[3] Shanghai Hlth & Med Ctr, Dept Geriatr, Wuxi, Peoples R China
关键词
Generative artificial intelligence; Generative models; Ophthalmic imaging; ADVERSARIAL NETWORK; SUPERRESOLUTION; PREDICTION;
D O I
10.1007/s00371-025-03988-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Generative Artificial Intelligence (GenAI) is revolutionizing ophthalmology imaging by addressing critical limitations in data availability, annotation costs, and clinical workflow automation. This review provides a comprehensive analysis of GenAI's technical innovations, clinical applications, and persistent challenges within the ophthalmic imaging domain. We first survey the evolution of generative architectures, from Generative Adversarial Networks to Diffusion Models and vision-language frameworks. These innovations enable novel applications including counterfactual pathology synthesis, longitudinal disease progression modeling, and post-treatment outcome visualization, which enhance diagnostic precision and patient engagement. We then systematically review methodological advancements in GenAI, with a focused analysis on key clinical application categories: image generation, cross-modal domain transfer, image enhancement, post-treatment prediction, image segmentation, and vision-language tasks. Finally, we critically evaluate generative models, evaluation methods, and persistent challenges, such as the need for standardized evaluation frameworks, anatomical fidelity validation, and equitable integration into global healthcare systems. By addressing these barriers, GenAI holds transformative potential to improve diagnostic accuracy, streamline personalized treatment workflows, and democratize access to high-quality ophthalmic care.
引用
收藏
页数:27
相关论文
共 162 条
[31]   An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis [J].
Elbatel, Marawan ;
Kamnitsas, Konstantinos ;
Li, Xiaomeng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT I, 2024, 15001 :656-666
[32]  
Esser P., 2024, P 41 INT C MACH LEAR
[33]   Taming Transformers for High-Resolution Image Synthesis [J].
Esser, Patrick ;
Rombach, Robin ;
Ommer, Bjoern .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12868-12878
[34]   LPUWF-LDM: Enhanced latent diffusion model for precise late-phase UWF-FA generation on limited dataset [J].
Fang, Zhaojie ;
Yu, Xiao ;
Zhou, Guanyu ;
Zhuang, Ke ;
Chen, Yifei ;
Ge, Ruiquan ;
Wang, Changmiao ;
Jia, Gangyong ;
Wu, Qing ;
Ye, Juan ;
Nuliqiman, Maimaiti ;
Xu, Peifang ;
Elazab, Ahmed .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 270
[35]   UWAT-GAN: Fundus Fluorescein Angiography Synthesis via Ultra-Wide-Angle Transformation Multi-scale GAN [J].
Fang, Zhaojie ;
Chen, Zhanghao ;
Wei, Pengxue ;
Li, Wangting ;
Zhang, Shaochong ;
Elazab, Ahmed ;
Jia, Gangyong ;
Ge, Ruiquan ;
Wang, Changmiao .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 :745-755
[36]   UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-Scale Generation and Registration Enhancement [J].
Ge, Ruiquan ;
Fang, Zhaojie ;
Wei, Pengxue ;
Chen, Zhanghao ;
Jiang, Hongyang ;
Elazab, Ahmed ;
Li, Wangting ;
Wan, Xiang ;
Zhang, Shaochong ;
Wang, Changmiao .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) :4820-4829
[37]   Generation of Structurally Realistic Retinal Fundus Images with Diffusion Models [J].
Go, Sojung ;
Ji, Younghoon ;
Park, Sang Jun ;
Lee, Soochahn .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, :2335-2344
[38]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[39]   Retinal optical coherence tomography image enhancement via deep learning [J].
Halupka, Kerry J. ;
Antony, Bhavna J. ;
Lee, Matthew H. ;
Lucy, Katie A. ;
Rai, Ravneet S. ;
Ishikawa, Hiroshi ;
Wollstein, Gadi ;
Schuman, Joel S. ;
Garnavi, Rahil .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12) :6205-6221
[40]   Vision-language models for medical report generation and visual question answering: a review [J].
Hartsock, Iryna ;
Rasool, Ghulam .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7