Machine Learning-Based Prediction of Fatigue Fracture Locations in 7075-T651 Aluminum Alloy Friction Stir Welded Joints

被引:0
作者
Mi, Guangming [1 ]
Sun, Guoqin [1 ,2 ]
Yang, Shuai [1 ]
Liu, Xiaodong [1 ]
Chen, Shujun [1 ]
Kang, Wei [2 ]
机构
[1] Beijing Univ Technol, Coll Mech & Energy Engn, Beijing 100124, Peoples R China
[2] Fundamental Frontier Res Ctr, Huairou Lab, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
fatigue fracture; machine learning; friction stir welding; artificial neural network; CRACK INITIATION; FSW; BEHAVIOR;
D O I
10.3390/met15050569
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Friction stir welding (FSW) is a solid-state joining technique widely used for aluminum alloys in aerospace, automotive, and shipbuilding applications, yet the prediction of fatigue fracture locations within FSW joints remains challenging for structural-life assessment. In this study, we investigate fatigue fracture location prediction in 7075-T651 aluminum alloy FSW joints by applying four machine learning methods-decision tree, logistic regression, a three-layer back-propagation artificial neural network (BP ANN), and a novel Quadratic Classification Neural Network (QCNN)-using maximum stress, stress amplitude, and stress ratio as input features. Evaluated on an experimental test set of eight loading conditions, the QCNN achieved the highest accuracy of 87.5%, outperforming BP ANN (75%), logistic regression (50%), and decision tree (37.5%). Building on QCNN outputs and incorporating relevant material property parameters, we derive a Regional Fracture Prediction Formula (RFPF) based on a Fourier-series quadratic expansion, enabling the rapid estimation of fracture zones under varying loads. These results demonstrate the QCNN's superior predictive capability and the practical utility of the RFPF framework for the fatigue failure analysis and service-life assessment of FSW structures.
引用
收藏
页数:26
相关论文
共 39 条
[1]   A three-dimensional backward-wave network matched with free space [J].
Alitalo, Pekka ;
Luukkonen, Olli ;
Tretyakov, Sergei .
PHYSICS LETTERS A, 2008, 372 (15) :2720-2723
[2]  
Ashley Dylan R., 2021, arXiv
[3]   Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy [J].
Aydin, Hakan ;
Tutar, Mumin ;
Durmus, Ali ;
Bayram, Ali ;
Sayaca, Tayfun .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2012, 65 (01) :21-30
[4]  
Bank D, 2023, Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook, P353, DOI [DOI 10.1007/978-3-031-24628-916, 10.1007/978-3-031-24628-9_16, DOI 10.1007/978-3-031-24628-9_16]
[5]   Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network [J].
Barbosa, Joelton Fonseca ;
Correia, Jose A. F. O. ;
Freire Junior, R. C. S. ;
De Jesus, Abilio M. P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 135
[6]   Prediction model for bearing surface friction coefficient in bolted joints based on GA-BP neural network and experimental data [J].
Chen, Wentao ;
Li, Ying ;
Liu, Zhifeng ;
Zhang, Caixia ;
Zhao, Yongsheng ;
Yan, Xing .
TRIBOLOGY INTERNATIONAL, 2025, 201
[7]   Microstructural observations and tensile fracture behavior of FSW twin roll cast AZ31 Mg sheets [J].
Dorbane, A. ;
Ayoub, G. ;
Mansoor, B. ;
Hamade, R. F. ;
Kridli, G. ;
Shabadi, R. ;
Imad, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 649 :190-200
[8]   High-Cycle Fatigue Life and Strength Prediction for Medium-Carbon Bainitic Steels [J].
Fan, Yusong ;
Gui, Xiaolu ;
Liu, Miao ;
Wang, Xi ;
Feng, Chun ;
Gao, Guhui .
METALS, 2022, 12 (05)
[9]   Comparative analysis of ensemble learning techniques for enhanced fatigue life prediction [J].
Farhadi, Sasan ;
Tatullo, Samuele ;
Ferrian, Francesco .
SCIENTIFIC REPORTS, 2025, 15 (01)
[10]   Data-driven prediction of the fatigue performance of corroded high-strength steel wires [J].
Guo, Xuelian ;
Liu, Xiaodong ;
Long, Guanxu ;
Zhao, Yue ;
Yuan, Yangguang .
ENGINEERING FAILURE ANALYSIS, 2023, 146