Stable Diffusion Model-based Scintigraphy Image Synthesis: Data Augmentation Toward Enhanced Multiclass Thyroid Diagnosis

被引:2
作者
Hajianfar, Ghasem [1 ]
Sabouri, Maziar [2 ]
Manesh, Abdollah Saberi [1 ]
Bagheri, Soroush [3 ]
Arabi, Mohsen [4 ]
Zakavi, Seyed Rasoul [5 ]
Askari, Emran [5 ]
Rasouli, Ali [3 ]
Asadzadeh, Azin [6 ]
Aghaee, Atena [5 ]
Fattahi, Kourosh [7 ]
Bayat, Ehsan [8 ]
Mogharrabi, Mahdi [6 ]
Chehreghani, Mohammad [9 ]
Salimi, Yazdan [10 ]
Sanaat, Amirhossein [10 ]
Rahmin, Arman [2 ]
Shiri, Isaac [10 ]
Zaidi, Habib [10 ]
机构
[1] Univ Hosp Geneva, Div Nucl Med & Mol Imaging, Geneva, Switzerland
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada
[3] Kashan Univ Med Sci, Dept Med Phys, Kashan, Iran
[4] Alborz Univ Med Sci Karaj, Dept Pathol & Radiol Sch Med, Sch Med, Karaj, Iran
[5] Mashhad Univ Med Sci, Dept Nucl Med, Res Ctr, Mashhad, Iran
[6] Golestan Univ Med Sci, Dept Nucl Med, Sazar Hosp, Gorgan, Iran
[7] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[8] Kermanshah Univ Med Sci, Dept Med Imaging, Fac Nucl Med, Kermanshah, Iran
[9] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
[10] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, Geneva, Switzerland
来源
2024 12TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING, EUVIP 2024 | 2024年
基金
瑞士国家科学基金会;
关键词
Thyroid; Scintigraphy; Classification; Stable Diffusion; Augmentation;
D O I
10.1109/EUVIP61797.2024.10772863
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The objective of this study is to assess the efficacy of advanced augmentation techniques, such as stable diffusion, in improving the performance of deep learning models in the classification of scintigraphic thyroid images. In this retrospective study, 2983 anterior view scintigraphic images were collected and subsequently categorized into four thyroid conditions. Both stable diffusion and conventional augmentation techniques were utilized. The generated images, alongside real images, were used to train a ResNet101V2 architecture under six different training strategies. The strategies were assessed against external datasets to evaluate model performance in terms of accuracy, precision, recall, and F1-score. The use of synthetic data in training led to consistently superior performances compared to training with only real data. Specifically, the models trained with synthetic data augmentation demonstrated higher precision and recall. The incorporation of synthetic images generated via stable diffusion significantly enhanced the diagnostic capabilities of AI models in thyroid scintigraphy interpretation. This approach not only improves the classification accuracy but also provides a viable solution to the challenge of data scarcity in medical imaging.
引用
收藏
页数:6
相关论文
共 17 条
[1]  
Akrout M., Deep Generative Models, V14533
[2]  
[Anonymous], Knowledge-Based Systems, V236
[3]   Imaging of the Thyroid Practical Approach [J].
Calle, Susana ;
Choi, Jeanie ;
Ahmed, Salmaan ;
Bell, Diana ;
Learned, Kim O. .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2021, 31 (03) :265-284
[4]   Remodeling 99mTc-Pertechnetate Thyroid Uptake: Statistical, Machine Learning, and Deep Learning Approaches [J].
Currie, Geoffrey M. ;
Iqbal, Basit .
JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY, 2022, 50 (02) :143-152
[5]   Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance [J].
Hajianfar, Ghasem ;
Sabouri, Maziar ;
Salimi, Yazdan ;
Amini, Mehdi ;
Bagheri, Soroush ;
Jenabi, Elnaz ;
Hekmat, Sepideh ;
Maghsudi, Mehdi ;
Mansouri, Zahra ;
Khateri, Maziar ;
Jamshidi, Mohammad Hosein ;
Jafari, Esmail ;
Rajabi, Ahmad Bitarafan ;
Assadi, Majid ;
Oveisi, Mehrdad ;
Shiri, Isaac ;
Zaidi, Habib .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2024, 34 (02) :242-257
[6]  
Mukhopadhyay, 2024, Lecture Notes in Computer Science, V14533, p99 109, DOI 10.1007978-3-031-53767-7_10
[7]  
Parry Z, 2017, ANAEST INTENS CARE M, V18, P488
[8]   Fusing deep and handcrafted features for intelligent recognition of uptake patterns on thyroid scintigraphy [J].
Pi, Yong ;
Yang, Pei ;
Wei, Jianan ;
Zhao, Zhen ;
Cai, Huawei ;
Yi, Zhang .
KNOWLEDGE-BASED SYSTEMS, 2022, 236
[9]  
Quao T., 2021, JInt Med Res, V49, DOI [10.1177/0300060520982842.1, DOI 10.1177/0300060520982842.1]
[10]   High-Resolution Image Synthesis with Latent Diffusion Models [J].
Rombach, Robin ;
Blattmann, Andreas ;
Lorenz, Dominik ;
Esser, Patrick ;
Ommer, Bjoern .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :10674-10685