FAST UNSUPERVISED TENSOR RESTORATION VIA LOW-RANK DECONVOLUTION

被引:0
作者
Reixach, David [1 ]
Morros, Josep Ramon [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
来源
2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2024年
关键词
Tensors; Restoration; Total Variation; De-noising; Enhancement;
D O I
10.1109/ICIP51287.2024.10647407
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-rank Deconvolution (LRD) has appeared as a new multi-dimensional representation model that enjoys important efficiency and flexibility properties. In this work we ask ourselves if this analytical model can compete against Deep Learning (DL) frameworks like Deep Image Prior (DIP) or Blind-Spot Networks (BSN) and other classical methods in the task of signal restoration. More specifically, we propose to extend LRD with differential regularization. This approach allows us to easily incorporate Total Variation (TV) and integral priors to the formulation leading to considerable performance tested on signal restoration tasks such image denoising and video enhancement, and at the same time benefiting from its small computational cost.
引用
收藏
页码:1656 / 1662
页数:7
相关论文
共 23 条
[1]   Algorithm 862: MATLAB tensor classes for fast algorithm prototyping [J].
Bader, Brett W. ;
Kolda, Tamara G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (04) :635-653
[2]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[3]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[4]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[5]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[6]   Convolutional Dictionary Learning: A Comparative Review and New Algorithms [J].
Garcia-Cardona, Cristina ;
Wohlberg, Brendt .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03) :366-381
[7]   Weighted Nuclear Norm Minimization with Application to Image Denoising [J].
Gu, Shuhang ;
Zhang, Lei ;
Zuo, Wangmeng ;
Feng, Xiangchu .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2862-2869
[8]  
Harshman R.A., 1970, UCLA Work Pap Phon, V16, P1
[9]  
Heide F, 2015, PROC CVPR IEEE, P5135, DOI 10.1109/CVPR.2015.7299149
[10]  
Kolda T. G., 2006, tech. rep, DOI [10.2172/923081, DOI 10.2172/923081]