Momentum microscopy with combined hemispherical and time-of-flight electron analyzers at the soft X-ray beamline I09 of the diamond light source

被引:0
作者
Schmitt, Matthias [1 ,2 ,3 ,5 ]
Biswas, Deepnarayan [1 ]
Tkach, Olena [4 ]
Fedchenko, Olena [4 ]
Liu, Jieyi [1 ]
Elmers, Hans-Joachim [4 ]
Sing, Michael [2 ,3 ]
Claessen, Ralph [2 ,3 ]
Lee, Tien-Lin [1 ]
Schoenhense, Gerd [4 ]
机构
[1] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, England
[2] Julius Maximilians Univ Warzburg, Phys Inst, D-97074 Wurzburg, Germany
[3] Julius Maximilians Univ, Wurzburg Dresden Cluster Excellence ct qmat, D-97074 Wurzburg, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[5] Carl Zeiss SMT GmbH, D-73447 Oberkochen, Germany
关键词
Momentum microscopy; PEEM; XPEEM; Hemispherical analyzer; Time-of-flight analyzer; RESOLUTION; ENERGY;
D O I
10.1016/j.ultramic.2025.114169
中图分类号
TH742 [显微镜];
学科分类号
摘要
The three-dimensional recording scheme of time-of-flight momentum microscopes (ToF-MMs) is advantageous for fast mapping of the photoelectron distribution in (E,k) parameter space over the entire Brillouin zone. However, the 2 ns pulse period of most synchrotrons is too short for pure ToF photoelectron spectroscopy. The use of a hemispherical analyzer (HSA) as a pre-filter allows ToF-MM at such high pulse rates. The first HSA & ToF hybrid MM is operated at the soft X-ray branch of beamline I09 at the Diamond Light Source, UK. The photon energy ranges from 105 eV to 2 keV, with circular polarization available for hy >= 145 eV. The HSA reduces the transmitted energy band to typically 0.5 eV, which is then further analyzed by ToF recording. In initial experiments, the overall efficiency gain when switching from the standard 2D (kx,ky) mode to the 3D (kx,ky,Ekin) hybrid mode was about 24. This value is determined by the number of resolved kinetic energies (here 12) and the transmission gain of the electron optics due to the high pass energy of the HSA in hybrid mode (Epass up to 500 eV). The transmission gain depends on the size of the photon footprint on the sample. Under k-imaging conditions, the energy and momentum resolution are 10.2 meV (FWHM) (4.2 meV with 200 mu m slits and Epass = 8 eV) and 0.010 & Aring;-1. The energy filtered X-PEEM mode showed a spatial resolution of 250 nm. As examples, we show 2D band mapping of bilayer graphene, 3D mapping of the Fermi surface of Cu, circular dichroic ARPES for intercalated indenene layers, and the sp valence band of Au. Full-field photoelectron diffraction patterns of Ge show rich structure in k-field diameters of up to 6 & Aring;-1.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Cavity-enhanced high-order harmonic generation for high-performance time-resolved photoemission experiments [J].
Allison, Thomas K. ;
Kunin, Alice ;
Schoenhense, Gerd .
APL PHOTONICS, 2025, 10 (01)
[2]   Spectromicroscopy in a low energy electron microscope [J].
Bauer, E ;
Koziol, C ;
Lilienkamp, G ;
Schmidt, T .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1997, 84 (1-3) :201-209
[3]   Design and realization of topological Dirac fermions on a triangular lattice [J].
Bauernfeind, Maximilian ;
Erhardt, Jonas ;
Eck, Philipp ;
Thakur, Pardeep K. ;
Gabel, Judith ;
Lee, Tien-Lin ;
Schaefer, Joerg ;
Moser, Simon ;
Di Sante, Domenico ;
Claessen, Ralph ;
Sangiovanni, Giorgio .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL [J].
Baumgaertner, Kiana ;
Reuner, Marvin ;
Metzger, Christian ;
Kutnyakhov, Dmytro ;
Heber, Michael ;
Pressacco, Federico ;
Min, Chul-Hee ;
Peixoto, Thiago R. F. ;
Reiser, Mario ;
Kim, Chan ;
Lu, Wei ;
Shayduk, Roman ;
Izquierdo, Manuel ;
Brenner, Guenter ;
Roth, Friedrich ;
Schoell, Achim ;
Molodtsov, Serguei ;
Wurth, Wilfried ;
Reinert, Friedrich ;
Madsen, Anders ;
Popova-Gorelova, Daria ;
Scholz, Markus .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Time-resolved photoelectron spectroscopy using synchrotron radiation time structure [J].
Bergeard, N. ;
Silly, M. G. ;
Krizmancic, D. ;
Chauvet, C. ;
Guzzo, M. ;
Ricaud, J. P. ;
Izquierdo, M. ;
Stebel, L. ;
Pittana, P. ;
Sergo, R. ;
Cautero, G. ;
Dufour, G. ;
Rochet, F. ;
Sirotti, F. .
JOURNAL OF SYNCHROTRON RADIATION, 2011, 18 :245-250
[6]  
Borisenko S. V., 2012, Synchrotron Radiation News, V25, P6, DOI 10.1080/08940886.2012.720159
[7]   Performance of a photoelectron momentum microscope in direct- and momentum-space imaging with ultraviolet photon sources [J].
Chuang, Tzu-Hung ;
Hsu, Chuan-Che ;
Chiu, Wei-Sheng ;
Jhuang, Jyun-Syong ;
Yeh, I-Chun ;
Chen, Ruei-San ;
Gwo, Shanjr ;
Wei, Der-Hsin .
JOURNAL OF SYNCHROTRON RADIATION, 2024, 31 (Pt 1) :195-201
[8]   Tracking the surface atomic motion in a coherent phonon oscillation [J].
Curcio, Davide ;
Volckaert, Klara ;
Kutnyakhov, Dmytro ;
Agustsson, Steinn Ymir ;
Buehlmann, Kevin ;
Pressacco, Federico ;
Heber, Michael ;
Dziarzhytski, Siarhei ;
Acremann, Yves ;
Demsar, Jure ;
Wurth, Wilfried ;
Sanders, Charlotte E. ;
Hofmann, Philip .
PHYSICAL REVIEW B, 2022, 106 (20)
[9]   Chirality in the Kagome Metal CsV3Sb5 [J].
Elmers, H. J. ;
Tkach, O. ;
Lytvynenko, Y. ;
Yogi, P. ;
Schmitt, M. ;
Biswas, D. ;
Liu, J. ;
Chernov, S., V ;
Nguyen, Quynh ;
Hoesch, M. ;
Kutnyakhov, D. ;
Wind, N. ;
Wenthaus, L. ;
Scholz, M. ;
Rossnagel, K. ;
Gloskovskii, A. ;
Schlueter, C. ;
Winkelmann, A. ;
Haghighirad, A. -a. ;
Lee, T. -l. ;
Sing, M. ;
Claessen, R. ;
Le Tacon, M. ;
Demsar, J. ;
Schoenhense, G. ;
Fedchenko, O. .
PHYSICAL REVIEW LETTERS, 2025, 134 (09)
[10]   Bias-Free Access to Orbital Angular Momentum in Two-Dimensional Quantum Materials [J].
Erhardt, Jonas ;
Schmitt, Cedric ;
Eck, Philipp ;
Schmitt, Matthias ;
Kessler, Philipp ;
Lee, Kyungchan ;
Kim, Timur ;
Cacho, Cephise ;
Cojocariu, Iulia ;
Baranowski, Daniel ;
Feyer, Vitaliy ;
Veyrat, Louis ;
Sangiovanni, Giorgio ;
Claessen, Ralph ;
Moser, Simon .
PHYSICAL REVIEW LETTERS, 2024, 132 (19)