Predicting the cumulative productivity of a solar distillation system augmented with a tilted absorber panel using machine learning models

被引:19
作者
Alawee, Wissam H. [1 ,2 ]
Al-Haddad, Luttfi A. [2 ]
Dhahad, Hayder A. [3 ]
Al-Haddad, Sinan A. [4 ]
机构
[1] Univ Technol Iraq, Control & Syst Engn Dept, Baghdad, Iraq
[2] Univ Technol Iraq, Training & Workshops Ctr, Baghdad, Iraq
[3] Univ Technol Iraq, Mech Engn Dept, Baghdad, Iraq
[4] Univ Technol Iraq, Civil Engn Dept, Baghdad, Iraq
来源
JOURNAL OF ENGINEERING RESEARCH | 2025年 / 13卷 / 02期
关键词
Solar Distillers; Machine Learning; Prediction; K Nearest Neighbor; PERFORMANCE;
D O I
10.1016/j.jer.2024.01.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solar distillation plays a crucial role in addressing water purification challenges, making it a key technology in sustainable solutions. To enhance the performance of conventional solar distillers (CSD), this study focused on incorporating an absorber panel as an innovative approach. Two solar distillers were designed, manufactured, and subjected to a 10-hour experimental evaluation, measuring variables such as water temperature, glass covering temperature, ambient temperature, and cumulative productivity. The introduction of the absorber plate resulted in a remarkable increase in productivity, with the modified solar distiller (MSD) achieving a 138.68% improvement, from 1311.3 ml/m2.h to 3129.8 ml/m2.h. The adoption of machine learning techniques for forecasting the accumulated productivity of solar distillation systems holds immense importance in enabling precise and efficient predictions rather than long experimental evaluations. To predict cumulative productivity values, three machine learning models were tested, namely, Support Vector Machine (SVM), Decision Tree (DT) and k Nearest Neighbor (kNN). The kNN algorithm exhibited exceptional performance in forecasting cumulative productivity for both conventional and modified solar distillers, demonstrating a determination coefficient of 1.000 and a zero valued coefficient of variation. These findings highlight the promising potential of machine learning in future research endeavors aimed at forecasting solar distiller outputs.
引用
收藏
页码:833 / 841
页数:9
相关论文
共 46 条
[21]   Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate [J].
Elsheikh, Ammar H. ;
Katekar, Vikrant P. ;
Muskens, Otto L. ;
Deshmukh, Sandip S. ;
Abd Elaziz, Mohamed ;
Dabour, Sherif M. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 :273-282
[22]   Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles' coating, parabolic solar concentrator, and phase change material [J].
Essa, F. A. ;
Abdullah, A. S. ;
Alawee, Wissam H. ;
Alarjani, A. ;
Alqsair, Umar F. ;
Shanmugan, S. ;
Omara, Z. M. ;
Younes, M. M. .
CASE STUDIES IN THERMAL ENGINEERING, 2022, 29
[23]   Experimental investigation of convex tubular solar still performance using wick and nanocomposites [J].
Essa, F. A. ;
Alawee, Wissam H. ;
Mohammed, Suha A. ;
Dhahad, Hayder A. ;
Abdullah, A. S. ;
Omara, Z. M. .
CASE STUDIES IN THERMAL ENGINEERING, 2021, 27
[24]   Improving the performance of tubular solar still using rotating drum Experimental and theoretical investigation [J].
Essa, F. A. ;
Abdullah, A. S. ;
Omara, Z. M. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 :579-589
[25]   Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: Experimental implementation [J].
Essa, F. A. ;
Omara, Z. M. ;
Abdullah, A. S. ;
Shanmugan, S. ;
Panchal, Hitesh ;
Kabeel, A. E. ;
Sathyamurthy, Ravishankar ;
Alawee, Wissam H. ;
Manokar, A. Muthu ;
Elsheikh, Ammar H. .
JOURNAL OF ENERGY STORAGE, 2020, 32
[26]   Eco-friendly coffee-based colloid for performance augmentation of solar stills [J].
Essa, F. A. ;
Elsheikh, Ammar H. ;
Algazzar, Almoataz A. ;
Sathyamurthy, Ravishankar ;
Ali, Mohamed Kamal Ahmed ;
Abd Elaziz, Mohamed ;
Salman, K. H. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 136 :259-267
[27]   Improving the pyramid solar distiller performance by using pyramidal absorber, mirrors, condenser, and thermal storing material [J].
Essa, Fadl A. ;
Alawee, Wissam H. ;
Mohammed, Suha A. ;
Dhahad, Hayder A. ;
Abdullah, A. S. ;
Alqsair, Umar F. ;
Omara, Z. M. ;
Younes, M. M. .
CASE STUDIES IN THERMAL ENGINEERING, 2022, 40
[28]   Development of artificial neural networks for performance prediction of a heat pump assisted humidification-dehumidification desalination system [J].
Faegh, Meysam ;
Behnam, Pooria ;
Shafii, Mohammad Behshad ;
Khiadani, Mehdi .
DESALINATION, 2021, 508
[29]   An experimental comparison study between four different designs of solar stills [J].
Hussen, Hasanen M. ;
Younes, M. M. ;
Alawee, Wissam H. ;
Abdullah, A. S. ;
Mohammed, Suha A. ;
Atteya, T. E. M. ;
Abbas, Faheem ;
Omara, Z. M. .
CASE STUDIES IN THERMAL ENGINEERING, 2023, 44
[30]  
Jaber A.A., 2018, Int. J. Electr. Comput. Eng., V2088-8708, P8