Classification of JAK1 Inhibitors and SAR Research by Machine Learning Methods

被引:5
作者
Yang, Zhenwu [1 ]
Tian, Yujia [1 ]
Kong, Yue [3 ]
Zhu, Yushan [2 ]
Yan, Aixia [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Pharmaceut Engn, State Key Lab Chem Resource Engn, POB 53,15 BeiSanHuan East Rd, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Life Sci & Technol, Natl Energy R&D Ctr Biorefinery, Beijing 100029, Peoples R China
[3] Hyperdimens Insight Pharmaceut Ltd, Room 511,Block A,2 C,DongSanHuan North Rd, Beijing, Peoples R China
来源
ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES | 2022年 / 2卷
关键词
Deep neural networks (DNN); Janus kinase 1 (JAK1) inhibitor; Molecular modeling; Structure-activity relationship; Substructure analysis; JANUS KINASE 1; RHEUMATOID-ARTHRITIS; DUAL INHIBITORS; DISCOVERY; DERIVATIVES; POTENT; DOCKING; DESIGN; IDENTIFICATION; PHARMACOPHORE;
D O I
10.1016/j.ailsci.2022.100039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Janus kinase 1 (JAK1) is a key regulator of gene transcription, inhibition of JAK1 is an intervention for many diseases including rheumatoid arthritis and Crohn's disease. In this study, we collected a dataset containing 2982 JAK1 inhibitors, characterized molecules by MACCS fingerprints and Morgan fingerprints. We used support vector machine (SVM), decision tree (DT), random forest (RF) and extreme gradient boosting tree (XGBoost) algorithms to build 16 traditional machine learning classification models. Additionally, we utilized deep neural networks (DNN) to develop four deep learning models. The best model (Model 3B) built by RF and Morgan fingerprints achieved the accuracy (ACC) of 93.6% and Mathews correlation coefficient (MCC) of 0.87 on the test set. Furthermore, we made structure-activity relationship (SAR) analyses for JAK1 inhibitors, based on the output from the random forest models. After analyzing the important keys of two types of fingerprints, it was observed that some substructures such as pyrazole, pyrrolotriazolopyrimidine and pyrazolopyrimidine appeared frequently in highly active JAK1 inhibitors.
引用
收藏
页数:14
相关论文
共 140 条
[21]  
Combs Andrew P, 2009, US Pat, Patent No. B2):US8871753US2009286778(A1)
[22]  
Combs Andrew P, 2010, US Pat, Patent No. [US8765727US2010190804(A1), US2011251215(A9), 20112512159]
[23]  
Combs Andrew P, 2009, US Pat, Patent No. [B2):US8871753, 28871753]
[24]   Abrocitinib for the treatment of atopic dermatitis [J].
Crowley, Erika L. ;
Nezamololama, Novin ;
Papp, Kim ;
Gooderham, Melinda J. .
EXPERT REVIEW OF CLINICAL IMMUNOLOGY, 2020, 16 (10) :955-962
[25]   Pharmacophore modeling of JAK1: A target infested with activity-cliffs [J].
Daoud, Safa ;
Taha, Mutasem O. .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2020, 99
[26]   ChEMBL web services: streamlining access to drug discovery data and utilities [J].
Davies, Mark ;
Nowotka, Michal ;
Papadatos, George ;
Dedman, Nathan ;
Gaulton, Anna ;
Atkinson, Francis ;
Bellis, Louisa ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W612-W620
[27]  
Daylight Theory Manual, 2006, SMARTS-A Language for Describing Molecular Patterns
[28]  
DeLong ER, 1988, Biometrics, P44
[29]   Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study [J].
Deodhar, Atul ;
Sliwinska-Stanczyk, Paula ;
Xu, Huji ;
Baraliakos, Xenofon ;
Gensler, Lianne S. ;
Fleishaker, Dona ;
Wang, Lisy ;
Wu, Joseph ;
Menon, Sujatha ;
Wang, Cunshan ;
Dina, Oluwaseyi ;
Fallon, Lara ;
Kanik, Keith S. ;
van der Heijde, Desiree .
ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (08) :1004-1013
[30]   Filgotinib: First Approval [J].
Dhillon, Sohita ;
Keam, Susan J. .
DRUGS, 2020, 80 (18) :1987-1997