Painlevé IV, biconfluent Heun and the semi-classical Laguerre polynomials

被引:0
作者
Wang, Dan [1 ]
Zhu, Mengkun [2 ]
Chen, Yang [3 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213000, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Math, Ave Univ, Taipa, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Recurrence coefficients; Painlev & eacute; equation; Heun equation; the semi-classical Laguerre polynomials; LARGE HANKEL-MATRICES; ORTHOGONAL POLYNOMIALS; SMALLEST EIGENVALUE; RECURRENCE COEFFICIENTS;
D O I
10.1142/S2010326325500157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate a certain linear statistic of the unitary ensembles with two parameters, which is equivalent to the characterization of a sequence of polynomials orthogonal with respect to a semi-classical Laguerre weight w(z; s, t) = z(alpha)e(-sz2 + tz), z is an element of [0, infinity), with parameters alpha > 0, s > 0, t is an element of & Ropf;. We explore certain transformations of the recurrence coefficients and the sub-leading coefficient for the semi-classical Laguerre polynomials, which can serve as solutions of the analogs of Painlev & eacute; IV, include the Jimbo-Miwa-Okamoto sigma-form of Painlev & eacute; IV and the discrete sigma-form of Painlev & eacute; IV. Using Dyson's Coulomb fluid approach, we derive the asymptotic behaviors of the recurrence coefficients and the smallest eigenvalue of large Hankel matrices generated by the semi-classical Laguerre weight. Additionally, we reduce the second-order differential equation satisfied by the orthogonal polynomial generated by the semi-classical Laguerre weight to the biconfluent Heun equation.
引用
收藏
页数:32
相关论文
共 46 条
[1]   Painleve V and time-dependent Jacobi polynomials [J].
Basor, Estelle ;
Chen, Yang ;
Ehrhardt, Torsten .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
[2]  
Berg C, 2002, MATH SCAND, V91, P67
[3]   Recurrence coefficients of generalized Meixner polynomials and Painleve equations [J].
Boelen, Lies ;
Filipuk, Galina ;
Van Assche, Walter .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
[4]   DISCRETE PAINLEVE EQUATIONS FOR RECURRENCE COEFFICIENTS OF SEMICLASSICAL LAGUERRE POLYNOMIALS [J].
Boelen, Lies ;
Van Assche, Walter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1317-1331
[5]   ORTHOGONAL POLYNOMIALS AND THEIR DERIVATIVES .1. [J].
BONAN, S ;
NEVAI, P .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (02) :134-147
[6]   ORTHOGONAL POLYNOMIALS AND THEIR DERIVATIVES .2. [J].
BONAN, S ;
LUBINSKY, DS ;
NEVAI, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (04) :1163-1176
[7]   ESTIMATES OF THE ORTHOGONAL POLYNOMIALS WITH WEIGHT EXP(-XM), M AN EVEN POSITIVE INTEGER [J].
BONAN, SS ;
CLARK, DS .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (04) :408-410
[8]   Singular linear statistics of the Laguerre unitary ensemble and Painleve. III. Double scaling analysis [J].
Chen, Min ;
Chen, Yang .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[9]   On the linear statistics of Hermitian random matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1141-1152
[10]   Jacobi polynomials from compatibility conditions [J].
Chen, Y ;
Ismail, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :465-472