Fundamental Identification Limit of Single-Input and Single-Output Linear Time-Invariant Systems

被引:0
作者
Sun, Shuai [1 ,2 ]
Mo, Yilin [1 ,2 ]
You, Keyou [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, BNRist, Beijing, Peoples R China
来源
2022 13TH ASIAN CONTROL CONFERENCE, ASCC | 2022年
关键词
System Identification; Fisher Information Matrix; Cramer-Rao Bound; System Parameters; CONSISTENCY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification problem of the system parameters of discrete-time linear time-invariant(LTI) systems. Based on a limited number of input/output sample trajectories, under the condition of the total energy of input is limited and input can fully excite the state of the system, we give the fundamental identification limit of system parameters (up to a similarity transformation) for marginally stable single-input and single-output(SISO) systems by using Cramer-Rao bound, and we show that the identification of system parameters become more and more difficult as the system dimension increases.
引用
收藏
页码:2157 / 2162
页数:6
相关论文
共 19 条
[1]  
Datta B., 2004, Numerical methods for linear control systems, V1
[2]   On the Sample Complexity of the Linear Quadratic Regulator [J].
Dean, Sarah ;
Mania, Horia ;
Matni, Nikolai ;
Recht, Benjamin ;
Tu, Stephen .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) :633-679
[3]   Consistency and relative efficiency of subspace methods [J].
Deistler, M ;
Peternell, K ;
Scherrer, W .
AUTOMATICA, 1995, 31 (12) :1865-1875
[4]   Finite time identification in unstable linear systems [J].
Faradonbeh, Mohamad Kazem Shirani ;
Tewari, Ambuj ;
Michailidis, George .
AUTOMATICA, 2018, 96 :342-353
[6]  
Ho BL, 1966, Automatisierungstechnik, V14, P545
[7]  
Kay S. M., 1993, FUNDAMENTALS STAT SI
[8]   CONSISTENCY OF LEAST-SQUARES IDENTIFICATION METHOD [J].
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) :779-781
[9]  
Ljung L., 1997, System identification: theory for the user prenticehall, V2
[10]  
LUKE Y. L., 1969, Special Functions and Their Approximations: V. 2