KDAS: KNOWLEDGE DISTILLATION VIA ATTENTION SUPERVISION FRAMEWORK FOR POLYP SEGMENTATION

被引:1
作者
Quoc-Huy Trinh [1 ,2 ,3 ]
Minh-Van Nguyen [1 ,2 ,3 ]
Phuoc-Thao Vo Thi [1 ,2 ]
机构
[1] Univ Sci, VNU HCM, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] SpexAI GmbH, Dresden, Germany
来源
2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024 | 2024年
关键词
Polyp Segmentation; Knowledge Distillation; Symmetrical Guiding; Attention Supervision; Deep Learning;
D O I
10.1109/ICME57554.2024.10687662
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. While current state-of-the-art techniques yield impressive results, the size and computational cost of these models create challenges for practical industry applications. To address this challenge, we present KDAS, a Knowledge Distillation framework that incorporates attention supervision, and our proposed Symmetrical Guiding Module. This framework is designed to facilitate a compact student model with fewer parameters, allowing it to learn the strengths of the teacher model and mitigate the inconsistency between teacher features and student features, a common challenge in Knowledge Distillation, via the Symmetrical Guiding Module. Through extensive experiments, our compact models demonstrate their strength by achieving competitive results with state-of-the-art methods, offering a promising approach to creating compact models with high accuracy for polyp segmentation and in the medical imaging field. The implementation is available on https://github.com/huyquoctrinh/KDAS.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Bernal Jorge, 2015, CMIG, P99
[2]  
Bertels Jeroen, 2019, MICCAI
[3]  
Bui NT, 2024, P IEEE CVF WINT C AP, P7985
[4]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[5]  
Dong Bo, 2023, CAAI AIR
[6]  
Foivos IDiakogiannis, 2020, ISPRS J PHOTOGRAMMET
[7]   Knowledge Adaptation for Efficient Semantic Segmentation [J].
He, Tong ;
Shen, Chunhua ;
Tian, Zhi ;
Gong, Dong ;
Sun, Changming ;
Yan, Youliang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :578-587
[8]  
Hinton G., 2015, ARXIV150302531
[9]   Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning [J].
Jha, Debesh ;
Ali, Sharib ;
Tomar, Nikhil Kumar ;
Johansen, Havard D. ;
Johansen, Dag ;
Rittscher, Jens ;
Riegler, Michael A. ;
Halvorsen, Pal .
IEEE ACCESS, 2021, 9 :40496-40510
[10]   Kvasir-SEG: A Segmented Polyp Dataset [J].
Jha, Debesh ;
Smedsrud, Pia H. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas ;
Johansen, Dag ;
Johansen, Havard D. .
MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 :451-462