Validating Semantic Artifacts with Large Language Models

被引:1
作者
Tufek, Nilay [1 ]
Thuluva, Aparna Saissre [1 ]
Just, Valentin Philipp [2 ]
Ekaputra, Fajar J. [3 ,4 ]
Bandyopadhyay, Tathagata [1 ]
Sabou, Marta [3 ]
Hanbury, Allan [4 ]
机构
[1] Siemens AG, Dept Technol, Munich, Germany
[2] TU Wien, Inst Comp Engn, Vienna, Austria
[3] WU Vienna, Inst Data Proc & Knowledge Management, Vienna, Austria
[4] TU Wien, Inst Informat Syst Engn, Vienna, Austria
来源
SEMANTIC WEB: ESWC 2024 SATELLITE EVENTS, PT I | 2025年 / 15344卷
关键词
Semantic Artifacts; Validation; LLM; OPC UA;
D O I
10.1007/978-3-031-78952-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As part of knowledge engineering workflows, semantic artifacts, such as ontologies, knowledge graphs or semantic descriptions based on industrial standards, are often validated in terms of their compliance with requirements expressed in natural language (e.g., ontology competency questions, standard specifications). Key to this process is the translation of the requirements in machine-actionable queries (e.g., SPARQL) that can automate the validation process. This manual translation process is time-consuming, error-prone and challenging, especially in areas where domain experts might lack knowledge of semantic technologies. In this paper, we propose a Large Language Models (LLMs) based approach to translate requirements texts into SPARQL queries and test it in validation use cases related to SAREF and OPC UA Robotics. F1 scores of 88-100% indicate the feasibility of the approach and its potential impact on ensuring high quality semantic artifacts and further uptake of the semantic technologies (industrial) domains.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 22 条
[1]  
Allen B.P., 2023, Trans. Graph Data Knowl, V1, p3:1, DOI [10.4230/TGDK.1.1, DOI 10.4230/TGDK.1.1]
[2]  
Bareedu Y.S., 2022, Semantic Web (Preprint), P1
[3]   Evaluating Ontologies with Competency Questions [J].
Bezerra, Camila ;
Freitas, Fred ;
Santana, Filipe .
2013 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY - WORKSHOPS (WI-IAT), VOL 3, 2013, :284-+
[4]  
Brown TB, 2020, ADV NEUR IN, V33
[5]   A Review of Interoperability Standards for Industry 4.0 [J].
Burns, Thomas ;
Cosgrove, John ;
Doyle, Frank .
29TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM 2019): BEYOND INDUSTRY 4.0: INDUSTRIAL ADVANCES, ENGINEERING EDUCATION AND INTELLIGENT MANUFACTURING, 2019, 38 :646-653
[6]  
Corcho O., 2023, Working paper, DOI [10.48550/arXiv.2305.06746, DOI 10.48550/ARXIV.2305.06746]
[7]  
ETSI, 2021, Official ETSI portal for SAREF
[8]  
Huaman E, 2020, Arxiv, DOI arXiv:2005.01389
[9]  
Jozefowicz R, 2016, Arxiv, DOI arXiv:1602.02410
[10]  
Khorashadizadeh H, 2023, Arxiv, DOI [arXiv:2305.08804, DOI 10.18550/ARXTV.2305.08801.1TTPS://ARXV.ORG/ABS/2305]