Asymptotic Analysis of Elastic Elliptic Membrane Shells in Frictional Contact: Exploring Wear Phenomena

被引:0
作者
Aros, Angel [1 ,2 ]
Fernandes, Celio [3 ,4 ]
Roscani, Sabrina [5 ,6 ,7 ]
机构
[1] Edif Inst Invest Tecnol, CITMAga, Planta-1 Rua Constantino Candeira S-N,Campus Vida, Santiago De Compostela 15782, Spain
[2] Univ A Coruna, ETS Naut Maquinas, Dept Matemat, Paseo Ronda 51, La Coruna 15011, Spain
[3] Univ Minho, Ctr Math CMAT, Campus Gualtar, Braga, Portugal
[4] Univ Porto, Fac Engn FEUP, Transport Phenomena Res Ctr CEFT, Dept Mech Engn, Porto, Portugal
[5] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[6] FCE, Dept Matemat, San Lorenzo, Paraguay
[7] Univ Austral Rosario, Rosario, Argentina
基金
欧盟地平线“2020”;
关键词
Asymptotic analysis; shells; contact; friction; wear; JUSTIFICATION; MODELS;
D O I
10.1177/09217134251317896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of linearly elastic shells, all sharing the same middle surface, with thickness 2 epsilon , clamped along their entire lateral face, which upon deformation may enter in frictional contact with a moving foundation along its lower face. As a result of friction, material might be removed from the interface, thus causing wear. We focus in the case of an elliptic membrane, for which the orders of applied body force density, surface tractions density, and compliance functions with respect to the small parameter epsilon , representing thickness, are O ( 1 ) , O ( epsilon ) , and O ( epsilon ) , respectively. We show that the solution pair ( u ( epsilon ) , w ( epsilon ) ) of displacements and wear fields of the three-dimensional scaled variational contact problem converges to a pair of limit functions, ( u , w ) , which can be identified with the solution pair of a limit two-dimensional variational problem, since u = ( u i ) is independent of the transverse variable, x 3 . Besides, not all the convergences happen in the same topologies, since u alpha ( epsilon ) -> u alpha in C ( [ 0 , T ] ; H 1 ( Omega ) ) , u 3 ( epsilon ) -> u 3 in C ( [ 0 , T ] ; L 2 ( Omega ) ) , and w ( epsilon ) -> w in C ( [ 0 , T ] ; L 2 ( omega ) ) as epsilon -> 0 , where omega is a domain in R 2 and Omega = omega x [ - 1 , 1 ] .
引用
收藏
页码:291 / 320
页数:30
相关论文
共 34 条
[1]   A dynamic thermoviscoelastic contact problem with friction and wear [J].
Andrews, KT ;
Shillor, M ;
Wright, S ;
Klarbring, A .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (14) :1291-1309
[2]   VISCOELASTIC ELLIPTIC MEMBRANE SHELLS ON BILATERAL FRICTIONAL CONTACT: AN ASYMPTOTIC APPROACH [J].
Aros, A. ;
Castineira, G. ;
Viano, J. M. .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (05) :441-460
[3]  
Bernadou M., 1996, Finite Element Methods for Thin Shell Problems
[4]   ELASTIC THIN SHELLS - ASYMPTOTIC THEORY IN THE ANISOTROPIC AND HETEROGENEOUS CASES [J].
CAILLERIE, D ;
SANCHEZPALENCIA, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04) :473-496
[5]   Mathematical and asymptotic analysis of thermoelastic shells in normal damped response contact [J].
Cao-Rial, M. T. ;
Castineira, G. ;
Rodriguez-Aros, A. ;
Roscani, S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
[6]   Asymptotic analysis of unilateral contact problems for linearly elastic shells: Error estimates in the membrane case [J].
Cao-Rial, M. T. ;
Rodriguez-Aros, A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 :40-53
[7]  
Cao-Rial M. T., 2024, ASYMPTOTIC ANAL LINE
[8]   On the Justification of Viscoelastic Elliptic Membrane Shell Equations [J].
Castineira, G. ;
Rodriguez-Aros, A. .
JOURNAL OF ELASTICITY, 2018, 130 (01) :85-113
[9]  
Chapelle D., 2003, CO FL SO ME
[10]  
Ciarlet P., 1988, Three-Dimensional Elasticity, VI