A Numerical Method for Solving Linear First-Order Volterra Integro-Differential Equations with Integral Boundary Condition

被引:0
作者
Temel, Zelal [1 ]
Cakir, Musa [2 ]
机构
[1] Univ Econ & Pedag, Dept Sci Res Innovat & Training Sci & Pedag staff, Karshi 180100, Uzbekistan
[2] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Tusba, Van, Turkiye
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2024年 / 19卷 / 02期
关键词
Singularly perturbed problem; Volterra integro-differential equation; Boundary layer; Numerical solution; DIFFERENCE METHOD; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an efficient numerical method for the linear first-order Volterra integro-differential equations with integral boundary condition. To solve this problem, boundaries are determined its derivative and the solution. The numerical solutions of the problem are modeled over a uniform mesh using the composite right-side rectangle concept for the integral component and the implicit difference rules for the differential component. Next, the stability and convergence of the numerical approach are discussed. The numerical experiments are presented confirming the accuracy of proposed scheme.
引用
收藏
页数:17
相关论文
共 31 条
[1]   A numerical treatment for singularly perturbed differential equations with integral boundary condition [J].
Amiraliyev, G. M. ;
Amiraliyeva, I. G. ;
Kudu, Mustafa .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :574-582
[2]  
Amiraliyev G.M., 1995, TURKISH J MATH, V19, P207
[3]   A fitted approximate method for a Volterra delay-integro-differential equation with initial layer [J].
Amiraliyev, Gabil M. ;
Yapman, Omer ;
Kudu, Mustafa .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05) :1417-1429
[4]   ON THE VOLTERRA DELAY-INTEGRO-DIFFERENTIAL EQUATION WITH LAYER BEHAVIOR AND ITS NUMERICAL SOLUTION [J].
Amiraliyev, Gabil M. ;
Yapman, Omer .
MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) :75-87
[5]  
Amiraliyev GM, 2018, J MATH ANAL, V9, P55
[6]   Numerical solution of a singularly perturbed three-point boundary value problem [J].
Cakir, M. ;
Amiraliyev, G. M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (10) :1465-1481
[7]   Uniform Second-Order Difference Method for a Singularly Perturbed Three-Point Boundary Value Problem [J].
Cakir, Musa .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[8]  
Farrell P., 2000, ROBUST COMPUTATIONAL, DOI DOI 10.1201/9781482285727
[9]  
Kudu M., 2015, Int. J. Math. Comput., V26, P71
[10]   A finite-difference method for a singularly perturbed delay integro-differential equation [J].
Kudu, Mustafa ;
Amirali, Ilhame ;
Amiraliyev, Gabil M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 308 :379-390