ON THE MATHEMATICAL MODEL OF THE CONTROL PROBLEM FOR A PSEUDO-PARABOLIC EQUATION WITH INVOLUTION

被引:0
作者
Dekhkonov, F. N. [1 ]
机构
[1] Namangan State Univ, Namangan, Uzbekistan
来源
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE | 2025年 / 18卷 / 02期
关键词
pseudo-parabolic equation; mathematical model; boundary problem; Volterra integral equation; admissible control; Laplace transform; involution; BOUNDARY CONTROL;
D O I
10.14529/mmp250201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the mathematical model of control problem for a pseudo-parabolic equation with involution in a bounded two-dimensional domain. The solution with the control function on the border of the considered domain is given. The constraints on the control are determined to ensure that the average value of the solution within the considered domain attains a given value. The initial-boundary problem is solved by the Fourier method, and the control problem under consideration is analyzed with the Volterra integral equation of the second kind. The existence of admissible control is proved by the Laplace transform method.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 29 条
[1]   AN INVERSE PROBLEM FOR SPACE AND TIME FRACTIONAL EVOLUTION EQUATIONS WITH AN INVOLUTION PERTURBATION [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Tapdigoglu, Ramiz G. .
QUAESTIONES MATHEMATICAE, 2017, 40 (02) :151-160
[2]   On a time-optimal control problem associated with the heat exchange process [J].
Albeverio, Sergio ;
Alimov, Shavkat .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (01) :58-68
[3]   Determining the Thermal Mode Setting Parameters Based on Output Data [J].
Alimov, Sh. A. ;
Komilov, N. M. .
DIFFERENTIAL EQUATIONS, 2022, 58 (01) :21-35
[4]  
Altmuller N., 2012, GAMM-Mitt., V35, P131, DOI DOI 10.1002/GAMM.201210010
[5]  
Cabada A., 2015, General Results for Differential Equations with Involutions, P17, DOI [10.2991/978-94-6239-121-5-2, DOI 10.2991/978-94-6239-121-5-2]
[6]  
Carleman T., 1932, VERHANDLUNGEN INT MA, VI, P138
[7]   Time-varying bang-bang property of time optimal controls for heat equation and its application [J].
Chen, Ning ;
Wang, Yanqing ;
Yang, Dong-Hui .
SYSTEMS & CONTROL LETTERS, 2018, 112 :18-23
[8]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[9]  
Coleman B., 1960, ARCH RATION MECH AN, V6, P355, DOI DOI 10.1007/BF00276168
[10]  
Coleman B.D., 1965, Archive_for_Rational Mechanics_and_Analysis, V19, P100, DOI DOI 10.1007/BF00282277