Prediction of the Therapeutic Response to Neoadjuvant Chemotherapy for Rectal Cancer Using a Deep Learning Model

被引:0
作者
Kubota, Shunsuke [1 ]
Wakiya, Taiichi [1 ]
Morohashi, Hajime [1 ]
Miura, Takuya [1 ]
Kanda, Taishu [1 ]
Matsuzaka, Masashi [2 ]
Sasaki, Yoshihiro [2 ]
Sakamoto, Yoshiyuki [1 ]
Hakamada, Kenichi [1 ]
机构
[1] Hirosaki Univ, Grad Sch Med, Dept Gastroenterol Surg, Hirosaki, Japan
[2] Hirosaki Univ Hosp, Dept Med Informat, Hirosaki, Japan
关键词
computational prediction; CT; machine learning; deep learning; NAC; RC; PATHOLOGICAL COMPLETE RESPONSE; METASTATIC COLORECTAL-CANCER; CLINICAL-PRACTICE GUIDELINES; PREOPERATIVE CHEMORADIOTHERAPY; NON-INFERIORITY; TUMOR RESPONSE; OXALIPLATIN; CARCINOMA; SURVIVAL; SOCIETY;
D O I
10.23922/jarc.2024-085
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objectives: Predicting the response to chemotherapy can lead to the optimization of neoadjuvant chemotherapy (NAC). The present study aimed to develop a non-invasive prediction model of therapeutic response to NAC for rectal cancer (RC). Methods: A dataset of the prechemotherapy computed tomography (CT) images of 57 patients from multiple institutions who underwent rectal surgery after three courses of S-1 and oxaliplatin (SOX) NAC for RC was collected. The therapeutic response to NAC was pathologically confirmed. It was then predicted whether they were pathologic responders or non-responders. Cases were divided into training, validation and test datasets. A CT patch-based predictive model was developed using a residual convolutional neural network and the predictive performance was evaluated. Binary logistic regression analysis of prechemotherapy clinical factors showed that none of the independent variables were significantly associated with the non-responders. Results: Among the 49 patients in the training and validation datasets, there were 21 (42.9%) and 28 (57.1%) responders and non-responders, respectively. A total of 3,857 patches were extracted from the 49 patients. In the validation dataset, the average sensitivity, specificity and accuracy was 97.3, 95.7 and 96.8%, respectively. Furthermore, the area under the receiver operating characteristic curve (AUC) was 0.994 (95% CI, 0.991-0.997; P<0.001). In the test dataset, which included 750 patches from 8 patients, the predictive model demonstrated high specificity (89.9%) and the AUC was 0.846 (95% CI, 0.817-0.875; P< 0.001). Conclusions: The non-invasive deep learning model using prechemotherapy CT images exhibited high predictive performance in predicting the pathological therapeutic response to SOX NAC.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 35 条
[1]   Advances in the treatment of locally advanced rectal cancer [J].
Ali, Fadwa ;
Keshinro, Ajaratu ;
Wesiser, Martin R. .
ANNALS OF GASTROENTEROLOGICAL SURGERY, 2021, 5 (01) :32-38
[2]   Rectal Cancer, Version 2.2018 Clinical Practice Guidelines in Oncology [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Cederquist, Lynette ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Engstrom, Paul F. ;
Grem, Jean L. ;
Grothey, Axel ;
Hochster, Howard S. ;
Hoffe, Sarah ;
Hunt, Steven ;
Kamel, Ahmed ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Mulcahy, Mary F. ;
Murphy, James D. ;
Nurkin, Steven ;
Saltz, Leonard ;
Sharma, Sunil ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Wuthrick, Evan ;
Gregory, Kristina M. ;
Gurski, Lisa ;
Freedman-Cass, Deborah A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (07) :874-901
[3]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[4]   Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer [J].
Dayde, Delphine ;
Tanaka, Ichidai ;
Jain, Rekha ;
Tai, Mei Chee ;
Taguchi, Ayumu .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (03)
[5]  
Deng Y, 2016, J Clin Oncol, V31, P611
[6]   Disease-free Survival and Local Recurrence for Laparoscopic Resection Compared With Open Resection of Stage II to III Rectal Cancer Follow-up Results of the ACOSOG Z6051 Randomized Controlled Trial [J].
Fleshman, James ;
Branda, Megan E. ;
Sargent, Daniel J. ;
Boller, Anne Marie ;
George, Virgilio V. ;
Abbas, Maher A. ;
Peters, Walter R., Jr. ;
Maun, Dipen C. ;
Chang, George J. ;
Herline, Alan ;
Fichera, Alessandro ;
Mutch, Matthew G. ;
Wexner, Steven D. ;
Whiteford, Mark H. ;
Marks, John ;
Birnbaum, Elisa ;
Margolin, David A. ;
Larson, David W. ;
Marcello, Peter W. ;
Posner, Mitchell C. ;
Read, Thomas E. ;
Monson, John R. T. ;
Wren, Sherry M. ;
Pisters, Peter W. T. ;
Nelson, Heidi .
ANNALS OF SURGERY, 2019, 269 (04) :589-595
[7]   Tumor Regression Grading After Preoperative Chemoradiotherapy for Locally Advanced Rectal Carcinoma Revisited: Updated Results of the CAO/ARO/AIO-94 Trial [J].
Fokas, Emmanouil ;
Liersch, Torsten ;
Fietkau, Rainer ;
Hohenberger, Werner ;
Beissbarth, Tim ;
Hess, Clemens ;
Becker, Heinz ;
Ghadimi, Michael ;
Mrak, Karl ;
Merkel, Susanne ;
Raab, Hans-Rudolf ;
Sauer, Rolf ;
Wittekind, Christian ;
Roedel, Claus .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (15) :1554-1562
[8]   Differential diagnoses of gallbladder tumors using CT-based deep learning [J].
Fujita, Hiroaki ;
Wakiya, Taiichi ;
Ishido, Keinosuke ;
Kimura, Norihisa ;
Nagase, Hayato ;
Kanda, Taishu ;
Matsuzaka, Masashi ;
Sasaki, Yoshihiro ;
Hakamada, Kenichi .
ANNALS OF GASTROENTEROLOGICAL SURGERY, 2022, 6 (06) :823-832
[9]   Total neoadjuvant therapy for rectal cancer: Making sense of the results from the RAPIDO and PRODIGE 23 trials [J].
Giunta, E. F. ;
Bregni, G. ;
Pretta, A. ;
Deleporte, A. ;
Liberale, G. ;
Bali, A. M. ;
Moretti, L. ;
Troiani, T. ;
Ciardiello, F. ;
Hendlisz, A. ;
Sclafani, F. .
CANCER TREATMENT REVIEWS, 2021, 96
[10]   Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Glynne-Jones, R. ;
Wyrwicz, L. ;
Tiret, E. ;
Brown, G. ;
Rodel, C. ;
Cervantes, A. ;
Arnold, D. .
ANNALS OF ONCOLOGY, 2017, 28 :22-40