High-Valent Nickel-Induced Oxidative Coupling of Hydrogen Sulfide-Containing Methane to Acetic Acid

被引:0
作者
Zhang, Haonan [1 ,2 ]
Wang, Shuai [1 ,2 ]
Li, Yang [1 ,2 ]
Wang, Zhenxing [4 ]
Zhang, Qinhua [1 ,2 ]
Zhou, Qiang [1 ,2 ]
Xi, Yanyan [1 ,2 ]
Zheng, Lirong [5 ]
Ning, Hui [1 ,2 ]
Wu, Mingbo [1 ,2 ,3 ]
Wu, Wenting [1 ,2 ]
机构
[1] China Univ Petr East China, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Inst New Energy, P, R China, Qingdao 266580, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266061, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[5] Univ Chinese Acad Sci, Inst High Energy Phys, Beijing 100040, Peoples R China
基金
中国国家自然科学基金;
关键词
methane oxidation carbonylation; hydrogen sulfide; natural gas; acetic acid; sulfur poisoning; SELECTIVE OXIDATION; SULFUR; CATALYSTS; O-2;
D O I
10.1021/acscatal.5c01014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The methane oxidative coupling activity of non-noble metals is highly susceptible to trace amounts of H2S in the feedstock. Developing H2S-resistant oxidative coupling catalysts with high activity and selectivity is crucial for enabling the use of inexpensive crude natural gas without costly H2S separation. In this study, we introduce a stable atomically dispersed nickel-based catalyst protected by strong oxygen ligands, which not only facilitates the conversion of H2S into chemical products but also promotes the oxidative coupling of methane with CO to CH3COOH in the presence of H2O2 or O2. By controlling the oxidation depth of H2S, the CH3COOH yield was improved from 7.9 to 12.9 mmol gcat -1 h-1, challenging the conventional belief that sulfur always poisons catalysts. Mechanistic studies reveal that the atomically dispersed Ni can in situ form high-valent Ni sites that preferentially oxidize H2S and activate the C-H bond of methane. Notably, the acidic environment generated by H2S oxidation enhanced the coupling reaction without metal leaching. This method is applicable to other atomically dispersed metal sites, effectively preventing H2S interaction with metal sites, which remain visually unchanged. By providing a robust solution to H2S resistance, this work provides a solid foundation for sulfur-containing feedstock upgrades.
引用
收藏
页码:10897 / 10907
页数:11
相关论文
共 54 条
[1]   Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions [J].
Agarwal, Nishtha ;
Freakley, Simon J. ;
McVicker, Rebecca U. ;
Althahban, Sultan M. ;
Dimitratos, Nikolaos ;
He, Qian ;
Morgan, David J. ;
Jenkins, Robert L. ;
Willock, David J. ;
Taylor, Stuart H. ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
SCIENCE, 2017, 358 (6360) :223-226
[2]   Nickel-based alumina supported catalysts for dry reforming of biogas in the absence and the presence of H2S: Effect of manganese incorporation [J].
Akansu, Hale ;
Arbag, Huseyin ;
Tasdemir, H. Mehmet ;
Yasyerli, Sena ;
Yasyerli, Nail ;
Dogu, Gulsen .
CATALYSIS TODAY, 2022, 397 :37-49
[3]  
An B, 2022, NAT MATER, V21, P932, DOI 10.1038/s41563-022-01279-1
[4]   Sulfone-Decorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion [J].
An, Bo ;
Zhang, Qin-hua ;
Zheng, Bo-shi ;
Li, Miao ;
Xi, Yan-yan ;
Jin, Xin ;
Xue, Sheng ;
Li, Zhong-tao ;
Wu, Ming-bo ;
Wu, Wen-ting .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (28)
[5]   Sulfation of a PdO(101) methane oxidation catalyst: mechanism revealed by first principles calculations [J].
Arevalo, Ryan Lacdao ;
Aspera, Susan Menez ;
Nakanishi, Hiroshi .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (01) :232-240
[6]   SELECTIVE OXIDATION OF METHANE TO SYNTHESIS GAS-USING TRANSITION-METAL CATALYSTS [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
FOORD, JS ;
GREEN, MLH ;
GREY, CP ;
MURRELL, AJ ;
VERNON, PDF .
NATURE, 1990, 344 (6264) :319-321
[7]   High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst [J].
Bai, Shuxing ;
Liu, Fangfang ;
Huang, Bolong ;
Li, Fan ;
Lin, Haiping ;
Wu, Tong ;
Sun, Mingzi ;
Wu, Jianbo ;
Shao, Qi ;
Xu, Yong ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Recent trends, current challenges and future prospects for syngas-free methane partial oxidation [J].
Blankenship, Andrea ;
Artsiusheuski, Mikalai ;
Sushkevich, Vitaly ;
van Bokhoven, Jeroen A. .
NATURE CATALYSIS, 2023, 6 (09) :748-762
[9]  
Chen J., 2023, ANGEW CHEM, V135, DOI 10.1002/ange.202310191
[10]   Highly Efficient and Stable Methane Dry Reforming Enabled by a Single-Site Cationic Ni Catalyst [J].
Cheng, Qingpeng ;
Yao, Xueli ;
Ou, Lifeng ;
Hu, Zhenpeng ;
Zheng, Lirong ;
Li, Guanxing ;
Morlanes, Natalia ;
Cerrillo, Jose Luis ;
Castano, Pedro ;
Li, Xingang ;
Gascon, Jorge ;
Han, Yu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (46) :25109-25119