Dirichlet problems in perforated domains

被引:0
作者
Righi, Robert [1 ]
Shen, Zhongwei [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Uniform estimates; Dirichlet problem; perforated domain; homogenization; NAVIER-STOKES EQUATIONS; VOLUME DISTRIBUTION; TINY HOLES; HOMOGENIZATION;
D O I
10.1080/03605302.2025.2486766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish W-1,W- p estimates for solutions u(epsilon) to Laplace's equation with the Dirichlet condition in a bounded and perforated, not necessarily periodically, C1 domain Omega(epsilon), eta in R-d. The bounding constants depend explicitly on two small parameters epsilon and eta, where epsilon represents the scale of the minimal distance between holes, and eta denotes the ratio between the size of the holes and epsilon. The proof relies on a large-scale L-p estimate for del u(epsilon), whose proof is divided into two parts. In the first part, we show that as epsilon, eta approach zero, harmonic functions in Omega(epsilon), eta may be approximated by solutions of an intermediate problem for a Schr & ouml;dinger operator in Omega. In the second part, a real-variable method is employed to establish the large-scale Lp estimate for del u(epsilon) by using the approximation at scales above epsilon. The results are shown to be sharp except in one particular case d >= 3 and p = d or d '.
引用
收藏
页码:686 / 722
页数:37
相关论文
共 15 条
[2]   Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces [J].
Amrouche, C ;
Girault, V ;
Giroire, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01) :55-81
[3]   Homogenization of the Poisson equation in a non-periodically perforated domain [J].
Blanc, Xavier ;
Wolf, Sylvain .
ASYMPTOTIC ANALYSIS, 2022, 126 (1-2) :129-155
[4]  
Cioranescu D., 1980, COLLGE FRANCE SEMINA, VIII, P425
[5]   THE INHOMOGENEOUS DIRICHLET PROBLEM IN LIPSCHITZ-DOMAINS [J].
JERISON, D ;
KENIG, CE .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :161-219
[6]   A UNIFIED HOMOGENIZATION APPROACH FOR THE DIRICHLET PROBLEM IN PERFORATED DOMAINS [J].
Jing, Wenjia .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :1192-1220
[7]  
Lions J.-L., 1980, Rocky Mt. J. Math., V10, P125
[8]   Some uniform elliptic estimates in a porous medium [J].
Masmoudi, N .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (12) :849-854
[9]  
Shen Z, 2018, OPER THEORY ADV APPL, V269, P1, DOI 10.1007/978-3-319-91214-1
[10]   Uniform W1,P estimates and large-scale regularity for Dirichlet problems in perforated domains [J].
Shen, Zhongwei ;
Wallace, Jamison .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)