Predictive Modeling of Heart Failure Outcomes Using ECG Monitoring Indicators and Machine Learning

被引:0
作者
Liu, Jia [1 ]
Zhu, Dan [1 ]
Deng, Lingzhi [1 ]
Chen, Xiaoliang [1 ]
机构
[1] First Peoples Hosp Chenzhou, Dept Cardiol, Zone 6, Chenzhou, Hunan, Peoples R China
关键词
electrocardiographic monitoring; heart failure; machine learning; predictive modeling; random forests; SHAP interpretation; ST SEGMENT DEPRESSION; POPULATION; PREVALENCE; MORTALITY; DISEASES;
D O I
10.1111/anec.70097
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundHeart failure (HF) is a major driver of global morbidity and mortality. Early identification of patients at risk remains challenging due to complex, multivariate clinical relationships. Machine learning (ML) methods offer promise for more accurate prognostication.ObjectiveWe evaluated the predictive value of electrocardiogram (ECG)-derived features and developed an ML model to stratify HF risk.MethodsWe analyzed a public cohort of 1061 patients, of whom 589 (55.5%) developed HF. Records were randomly divided into training (70%, n = 742) and test (30%, n = 319) sets. After preprocessing, we trained a random forest (RF) classifier. Performance on the test set was assessed via accuracy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). Feature selection employed Gini importance and the Boruta algorithm, while SHAP values provided model interpretability.ResultsThe RF model achieved an AUC of 0.969, with 91.8% accuracy, 93.8% sensitivity, 89.4% specificity, and a 92.7% F1-score. The top predictors included ST depression (Oldpeak), maximum heart rate (MaxHR), ST-segment slope, and serum cholesterol. Confusion matrix analysis confirmed robust discrimination between HF and non-HF cases. SHAP interpretation reinforced the dominant influence of ECG-related indices and cholesterol on individual risk estimates.ConclusionAn RF model leveraging ECG features demonstrated excellent performance for HF risk prediction and highlighted key physiologic markers. Future work should integrate comorbidity profiles and detailed biochemical data to further enhance clinical applicability.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Asia-Pacific Investigators and Asian Enrollment in Cardiometabolic Trials Insights From Publications Between 2011 and 2020 [J].
Azzopardi, Robert ;
Nicholls, Stephen J. ;
Nerlekar, Nitesh ;
Scherer, Daniel J. ;
Chandramouli, Chanchal ;
Lam, Carolyn S. P. ;
Muthalaly, Rahul ;
Tan, Sean ;
Wong, Christopher X. ;
Chew, Derek P. ;
Zoungas, Sophia ;
Yeo, Khung Keong ;
Nelson, Adam J. .
JACC-ASIA, 2023, 3 (05) :724-735
[2]   Effective Heart Disease Prediction Using Machine Learning Techniques [J].
Bhatt, Chintan M. ;
Patel, Parth ;
Ghetia, Tarang ;
Mazzeo, Pier Luigi .
ALGORITHMS, 2023, 16 (02)
[3]   Comparative Analysis of ECG and Holter Monitoring in the Assessment of Heart Rate in Heart Failure with Reduced Ejection Fraction and Sinus Rhythm [J].
Camazzola, Fabio Eduardo ;
Schwartzmann, Pedro Vellosa ;
Sabedotti, Marcelo ;
Massuti, Rafael ;
Zortea, Tulio ;
Chen, Vitoria ;
Maggi, Ana Carolina Guimaraes ;
de Souza, Francine Fonseca ;
Cardoso, Andressa da Silva ;
Selistre, Luciano da Silva .
ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2024, 121 (08)
[4]   Low Cholesterol Levels in Younger Heart Failure Patients May Predict Unfavorable Outcomes [J].
Charach, Lior ;
Grosskopf, Itamar ;
Galin, Leonid ;
Guterman, Irit ;
Karniel, Eli ;
Charach, Gideon .
MEDICINA-LITHUANIA, 2023, 59 (07)
[5]   High heart rate: a cardiovascular risk factor? [J].
Cook, Stephane ;
Togni, Mario ;
Schaub, Marcus C. ;
Wenaweser, Peter ;
Hess, Otto M. .
EUROPEAN HEART JOURNAL, 2006, 27 (20) :2387-2393
[6]   ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 [J].
Dickstein, Kenneth ;
Cohen-Solal, Alain ;
Filippatos, Gerasimos ;
McMurray, John J. V. ;
Ponikowski, Piotr ;
Poole-Wilson, Philip Alexander ;
Stromberg, Anna ;
van Veldhuisen, Dirk J. ;
Atar, Dan ;
Hoes, Arno W. ;
Keren, Andre ;
Mebazaa, Alexandre ;
Nieminen, Markku ;
Priori, Silvia Giuliana ;
Swedberg, Karl .
EUROPEAN HEART JOURNAL, 2008, 29 (19) :2388-2442
[7]   Heart rate: a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties [J].
Dobre, Daniela ;
Borer, Jeffrey S. ;
Fox, Kim ;
Swedberg, Karl ;
Adams, Kirkwood F. ;
Cleland, John G. F. ;
Cohen-Solal, Alain ;
Gheorghiade, Mihai ;
Gueyffier, Francois ;
O'Connor, Christopher M. ;
Fiuzat, Mona ;
Patak, Athul ;
Pina, Ileana L. ;
Rosano, Giuseppe ;
Sabbah, Hani N. ;
Tavazzi, Luigi ;
Zannad, Faiez .
EUROPEAN JOURNAL OF HEART FAILURE, 2014, 16 (01) :76-85
[8]   INCREASED MORTALITY IN MEN WITH ST SEGMENT DEPRESSION DURING 24-H AMBULATORY LONG-TERM ECG RECORDING - RESULTS FROM PROSPECTIVE POPULATION STUDY MEN BORN IN 1914, FROM MALMO, SWEDEN [J].
HEDBLAD, B ;
JUULMOLLER, S ;
SVENSSON, K ;
HANSON, BS ;
ISACSSON, SO ;
JANZON, L ;
LINDELL, SE ;
STEEN, B ;
JOHANSSON, BW .
EUROPEAN HEART JOURNAL, 1989, 10 (02) :149-158
[9]   Scoring System Based on Electrocardiogram Features to Predict the Type of Heart Failure in Patients With Chronic Heart Failure [J].
Hendry, Purnasidha Bagaswoto ;
Krisdinarti, Lucia ;
Erika, Maharani .
CARDIOLOGY RESEARCH, 2016, 7 (03) :110-116
[10]   Long-term prognostic significance of the ST level and ST slope in the 12-lead ECG in the general population [J].
Istolahti, Tiia ;
Nieminen, Tuomo ;
Huhtala, Heini ;
Lyytikainen, Leo-Pekka ;
Kahonen, Mika ;
Lehtimaki, Terho ;
Eskola, Markku ;
Anttila, Ismo ;
Jula, Antti ;
Rissanen, Harri ;
Nikus, Kjell ;
Hernesniemi, Jussi .
JOURNAL OF ELECTROCARDIOLOGY, 2020, 58 :176-183