A Software-Defined Approach to Enabling Network Controllers for Smart Environment Digital Twins

被引:0
作者
Wu, Chih-Chun [1 ]
Lai, Cheng-Chia [1 ]
Venkatasubramanian, Nalini [2 ]
Hsu, Cheng-Hsin [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Univ Calif Irvine, Dept Comp Sci, Irvine, CA USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE, CLOUDCOM | 2024年
关键词
Digital Twins; Smart City; Internet-of-Things; What-if Analysis; TECHNOLOGIES;
D O I
10.1109/CloudCom62794.2024.00018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid deployment of Internet-of-Things (IoT) devices in smart environments such as smart campuses and cities necessitates robust Quality-of-Service (QoS) management across heterogeneous networks. In this paper, we extend the concept of Network Digital Twin (NDT) to networked IoT devices, presenting the Network Digital Twin Controller (NDTC) that enhances the functionality and performance of smart environments. Our NDTC addresses key challenges by creating Digital Twins (DTs) of Physical Twins (PTs), synchronizing their states, and performing QoS-related what-if analyses. Specifically, we built a DT-enabled IoT-instrumented smart environment using an open-source Software-Defined Network (SDN) controller. We formulated and solved the state synchronization problem using our proposed Optimal Update (OU) and Gradient-driven Update (GU) algorithms, carefully adjusting the update frequency and data granularity to minimize DT/PT state deviation within given network bandwidth budgets. We also formulated and addressed the what-if analysis problem by selecting optimal what-if analyzers using our Optimal Selection (OS) algorithm for the most accurate QoS predictions under a given computing time budget. Our extensive experiments on a real testbed demonstrated the merits of our proposed solution: (i) our developed NDTC and algorithms meet the functional requirements, (ii) our OU and GU algorithms significantly reduce the state deviation between PTs and DTs, and (iii) our OS algorithm largely reduces the prediction errors of what-if analyses.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 40 条
[1]   Towards a Scalable Architecture for Building Digital Twins at the Edge [J].
Alanezi, Khaled ;
Mishra, Shivakant .
2023 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING, SEC 2023, 2023, :325-329
[2]   Network Digital Twin: Context, Enabling Technologies, and Opportunities [J].
Almasan, Paul ;
Ferriol-Galmes, Miquel ;
Paillisse, Jordi ;
Suarez-Varela, Jose ;
Perino, Diego ;
Lopez, Diego ;
Perales, Antonio Agustin Pastor ;
Harvey, Paul ;
Ciavaglia, Laurent ;
Wong, Leon ;
Ram, Vishnu ;
Xiao, Shihan ;
Shi, Xiang ;
Cheng, Xiangle ;
Cabellos-Aparicio, Albert ;
Barlet-Ros, Pere .
IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (11) :22-27
[3]  
Bencz£r AA, 2018, Arxiv, DOI arXiv:1802.05872
[4]  
Chen H., 2023, IEEE Internet of Things Journal, V11, p11 415
[5]   Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin Networks [J].
Dai, Yueyue ;
Zhang, Ke ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) :4968-4977
[6]   Smart Experts for Network State Estimation [J].
Edalat, Yalda ;
Ahn, Jong-Suk ;
Obraczka, Katia .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2016, 13 (03) :622-635
[7]   Building a Digital Twin for network optimization using Graph Neural Networks [J].
Ferriol-Galmes, Miquel ;
Suarez-Varela, Jose ;
Paillisse, Jordi ;
Shi, Xiang ;
Xiao, Shihan ;
Cheng, Xiangle ;
Barlet-Ros, Pere ;
Cabellos-Aparicio, Albert .
COMPUTER NETWORKS, 2022, 217
[8]   Digital Twin: Enabling Technologies, Challenges and Open Research [J].
Fuller, Aidan ;
Fan, Zhong ;
Day, Charles ;
Barlow, Chris .
IEEE ACCESS, 2020, 8 :108952-108971
[9]   Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies [J].
Guemes-Palau, Carlos ;
Almasan, Paul ;
Xiao, Shihan ;
Cheng, Xiangle ;
Shi, Xiang ;
Barlet-Ros, Pere ;
Cabellos-Aparicio, Albert .
PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
[10]   Online learning: A comprehensive survey [J].
Hoi, Steven C. H. ;
Sahoo, Doyen ;
Lu, Jing ;
Zhao, Peilin .
NEUROCOMPUTING, 2021, 459 :249-289