Transmission dynamics and stability of fractional order derivative model for COVID-19 epidemic with optimal control analysis

被引:0
作者
Suganya, S. [1 ]
Parthiban, V. [1 ]
Kavikumar, R. [2 ,3 ]
Kwon, Oh-Min [3 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Chennai 600127, Tamil Nadu, India
[2] VIT AP Univ, Sch Adv Sci, Dept Math, Amaravati 522237, India
[3] Chungbuk Natl Univ, Sch Elect Engn, Cheongju 28644, South Korea
来源
ELECTRONIC RESEARCH ARCHIVE | 2025年 / 33卷 / 04期
基金
新加坡国家研究基金会;
关键词
fractional order model; Caputo derivative; stability; fractional optimal control; numerical simulations; CALCULUS;
D O I
10.3934/era.2025095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This present study analyzes COVID-19 transmission using a nonlinear mathematical model with a Caputo fractional derivative. By using fixed point theory, the existence and uniqueness of the solution are examined. We compute the basic reproduction number and investigate the stability analysis of the model. Approximate solutions are obtained using fractional Adam-Bashforth-Moulton method. A comprehensive exploration of optimal control is performed, utilizing one control parameter to investigate the fluctuations in the infected people under some conditions. The simulation results demonstrate the potential of fractional order derivatives with control parameter for a pandemic situation.
引用
收藏
页码:2172 / 2194
页数:23
相关论文
共 42 条
[1]   EFFECT OF PARTIALLY AND FULLY VACCINATED INDIVIDUALS IN SOME REGIONS OF INDIA: A MATHEMATICAL STUDY ON COVID-19 OUTBREAK [J].
Aakash, M. ;
Gunasundari, C. .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
[2]   Mathematical modeling and simulation of SEIR model for COVID-19 outbreak: A case study of Trivandrum [J].
Aakash, M. ;
Gunasundari, C. ;
Al-Mdallal, Qasem M. M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
[3]   Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative [J].
Abdullahi, Auwal .
CHAOS SOLITONS & FRACTALS, 2021, 151
[4]   Optimal chemotherapy and immunotherapy schedules for a cancer-obesity model with Caputo time fractional derivative [J].
Akman Yildiz, Tugba ;
Arshad, Sadia ;
Baleanu, Dumitru .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9390-9407
[5]   A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems [J].
Ali, Hegagi M. ;
Pereira, Fernando Lobo ;
Gama, Silvio M. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) :3640-3649
[6]   Save the pine forests of wilt disease using a fractional optimal control strategy [J].
Ali, Hegagi Mohamed ;
Ameen, Ismail Gad .
CHAOS SOLITONS & FRACTALS, 2020, 132
[7]   An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment [J].
Ameen, I ;
Baleanu, Dumitru ;
Ali, Hegagi Mohamed .
CHAOS SOLITONS & FRACTALS, 2020, 137
[8]  
Atangana A., 2020, Fractional Order Analysis: Theory, Methods and Applications, P225, DOI [10.1002/9781119654223.ch9, DOI 10.1002/9781119654223.CH9]
[9]   Modeling and simulation of the novel coronavirus in Caputo derivative [J].
Awais, Muhammad ;
Alshammari, Fehaid Salem ;
Ullah, Saif ;
Khan, Muhammad Altaf ;
Islam, Saeed .
RESULTS IN PHYSICS, 2020, 19
[10]  
Chalishajar D., 2016, Appl. Math., V7, P1087, DOI [10.4236/am.2016.710097, DOI 10.4236/AM.2016.710097]