Benchmarking Quantum Models for Time-series Forecasting

被引:0
作者
Jones, Caitlin [1 ]
Kraus, Nico [2 ]
Bhardwaj, Pallavi [3 ]
Adler, Maximilian [2 ]
Schroedl-Baumann, Michael [3 ]
Manrique, David Zambrano [2 ]
机构
[1] BASF Digital Solut GmbH, Ludwigshafen, Germany
[2] Aqarios GmbH, Munich, Germany
[3] SAP SE, Walldorf, Germany
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2 | 2024年
关键词
Quantum computing; Machine Learning; Forecasting;
D O I
10.1109/QCE60285.2024.10246
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Time series forecasting is a valuable tool for many applications, such as stock price predictions, demand forecasting or logistical optimization. There are many well-established statistical and machine learning models that are used for this purpose. Recently in the field of quantum machine learning many candidate models for forecasting have been proposed, however in the absence of theoretical grounds for advantage thorough benchmarking is essential for scientific evaluation. To this end, we performed a benchmarking study using real data of various quantum models, both gate-based and annealing-based, comparing them to the state-of-the-art classical approaches, including extensive hyperparameter optimization. Overall we found that the best classical models outperformed the best quantum models. Most of the quantum models were able to achieve comparable results and for one data set two quantum models outperformed the classical ARIMA model. These results serve as a useful point of comparison for the field of forecasting with quantum machine learning.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 37 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]  
Balakrishnan D., 2023, 2023 2 INT C FUT TEC, P1
[4]  
Bausch J, 2020, ADV NEUR IN, V33
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]  
Bondarenko D, 2023, Arxiv, DOI [arXiv:2301.08167, 10.48550/ARXIV.2301.08167]
[7]  
Bowles J, 2024, Arxiv, DOI arXiv:2403.07059
[8]  
Brockwell PJ, 2016, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-29854-2
[9]  
Burgess A, 2022, Arxiv, DOI arXiv:2211.08567
[10]   Generalization in quantum machine learning from few training data [J].
Caro, Matthias C. ;
Huang, Hsin-Yuan ;
Cerezo, M. ;
Sharma, Kunal ;
Sornborger, Andrew ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2022, 13 (01)