共 46 条
Photovoltaic array static reconfiguration strategy based on OPRS under partial shading condition
被引:0
作者:
Pei, Tingting
[1
]
Zhang, Jian
[1
]
Chen, Wei
[1
]
Jiang, Lei
[1
]
Wang, Shuo
[1
]
机构:
[1] Lanzhou Univ Technol, Elect & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Photovoltaic array;
Partial shading;
Static reconfiguration;
Power enhancement;
OPRS strategy;
PV ARRAY;
POWER-GENERATION;
SYSTEM;
ENHANCEMENT;
PERFORMANCE;
ALGORITHM;
MITIGATE;
MODEL;
D O I:
10.1007/s00202-025-03224-2
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Partial shading in photovoltaic (PV) arrays results in mismatch losses and hotspot effects, thereby significantly limiting power generation efficiency. Reconfiguration strategies have been widely adopted to mitigate the impact of localized shading, reduce power losses, and enhance overall energy output. However, the practical applicability of most existing strategies is restricted by their reliance on specific shading patterns and strict requirements for array dimensions, rendering them less effective for complex or asymmetric PV array structures. To overcome these limitations, this paper proposes a novel reconfiguration strategy for PV arrays based on the odd-even progressive row shifting (OPRS) rule. The strategy introduces an additive progressive structure governed by odd-even logic to reassign the row positions of PV modules, enabling physical reconfiguration of the array layout to achieve more effective shadow dispersion. To evaluate the effectiveness of the proposed approach, simulation models of a symmetric 9x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}9 PV array and an asymmetric 6x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}5 PV array were developed in Matlab/Simulink. Comparative analyses were performed against conventional reconfiguration strategies, including TCT, OEP, ACMS, and Triple X. The simulation results demonstrate that the OPRS method consistently achieves higher global maximum power point (GMPP) values across both array configurations. Specifically, the average GMPP increased by 7.30% for the 9x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}9 array and by 13.46% for the 6x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}5 array. The proposed OPRS strategy effectively mitigates the adverse effects of partial shading, reduces mismatch losses, and improves the power output of PV arrays. It provides a practical and scalable solution for the deployment of large-scale PV systems in PV power plants.
引用
收藏
页数:25
相关论文