共 51 条
[21]
Leidich S., Buechele D., Lauenstein R., Kluenker M., Lind C., “Non-hydrolytic” sol–gel synthesis of molybdenum sulfides, Journal of Solid State Chemistry, 242, pp. 175-181, (2016)
[22]
Liu W., Liu X., Zhang P., Wang Z., Li X., Hu M., Nano-sized plate-like alumina synthesis via solution combustion, Ceramics International, 45, pp. 9919-9925, (2019)
[23]
Lopes A.C., Martins P., Lanceros-Mendez S., Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends, Progress in Surface Science, 89, pp. 239-277, (2014)
[24]
Mahinroosta M., Allahverdi A., Hazardous aluminum dross characterization and recycling strategies: A critical review, Journal of Environmental Management, 223, pp. 452-468, (2018)
[25]
Mahinroosta M., Allahverdi A., Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study, Journal of Environmental Management, 212, pp. 278-291, (2018)
[26]
Mahinroosta M., Allahverdi A., A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross, Journal of Cleaner Production, 179, pp. 93-102, (2018)
[27]
Mahinroosta M., Allahverdi A., Production of high purity α- and γ-alumina from aluminum dross, Encyclopedia of renewable and sustainable materials, (2020)
[28]
Mahinroosta M., Allahverdi A., Pilot-scale valorization of hazardous aluminum dross into γ-Al<sub>2</sub>O<sub>3</sub> nanoadsorbent for efficient removal of fluoride, Environmental Technology & Innovation, 23, (2021)
[29]
Mahinroosta M., Allahverdi A., Dong P., Bassim N., Green template-free synthesis and characterization of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy, Journal of Alloys and Compounds, 792, pp. 161-169, (2019)
[30]
Meng L., Zhao H., Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO<sub>2</sub> synthesized via flame spray pyrolysis, Applied Catalysis B: Environmental, 264, (2020)