Machine Learning Prediction Model of Waitlist Outcomes in Patients with Primary Sclerosing Cholangitis

被引:0
作者
Zhao, Xun [1 ]
Naghibzadeh, Maryam [1 ]
Sun, Yingji [1 ]
Rahmani, Arya [1 ]
Lilly, Leslie [1 ,2 ]
Selzner, Nazia [1 ,2 ]
Tsien, Cynthia [1 ,2 ]
Jaeckel, Elmar [1 ,2 ]
Vyas, Mary Pressley [3 ]
Krishnan, Rahul [4 ,5 ]
Hirschfield, Gideon [1 ,2 ]
Bhat, Mamatha [1 ,2 ]
机构
[1] Univ Hlth Network, Ajmera Transplant Program, Toronto, ON, Canada
[2] Univ Toronto, Dept Med, Div Gastroenterol & Hepatol, Toronto, ON, Canada
[3] PSC Partners Seeking Cure Canada, Toronto, ON, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[5] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
关键词
STAGE LIVER-DISEASE; NATURAL-HISTORY; TRANSPLANTATION; SURVIVAL; MORTALITY; RISK;
D O I
10.1097/TXD.0000000000001774
中图分类号
R3 [基础医学]; R4 [临床医学];
学科分类号
1001 ; 1002 ; 100602 ;
摘要
Background.Liver transplantation is essential for many people with primary sclerosing cholangitis (PSC). People with PSC are less likely to receive a deceased donor liver transplant compared with other causes of chronic liver disease. This disparity may stem from the inaccuracy of the model for end-stage liver disease (MELD) in predicting waitlist mortality or dropout for PSC. The broad applicability of MELD across many causes comes at the expense of accuracy in prediction for certain causes that involve unique comorbidities. We aimed to develop a model that could more accurately predict dynamic changes in waitlist outcomes among patients with PSC while including complex clinical variables. Methods.We developed 3 machine learning architectures using data from 4666 patients with PSC in the Scientific Registry of Transplant Recipients (SRTR) and tested our models on our institutional data set of 144 patients at the University Health Network (UHN). We evaluated their time-dependent concordance index (C-index) for mortality prediction and compared it against MELD-sodium and MELD 3.0. Results.Random survival forest (RSF), a decision tree-based survival model, outperformed MELD-sodium and MELD 3.0 in both the SRTR and the UHN test data set using the same bloodwork variables and readily available demographic data. It achieved a C-index of 0.868 (SD 0.020) and 0.771 (SD 0.085) on the SRTR and UHN test data, respectively. Training a separate RSF model using the UHN data with PSC-specific achieved a C-index of 0.91. In addition to high MELD score, increased white blood cells, time on the waiting list, platelet count, presence of Autoimmune hepatitis-PSC overlap, aspartate aminotransferase, female sex, age, history of stricture dilation, and extremes of body weight were the top-ranked features predictive of the outcomes. Conclusions.Our RSF model offers more accurate waitlist outcome prediction in PSC. The significant performance improvement with the inclusion of PSC-specific variables highlights the importance of disease-specific variables for predicting trajectories of clinically distinct presentations.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Autoimmune hepatitis overlap syndromes: an evaluation of treatment response, long-term outcome and survival [J].
Al-Chalabi, T. ;
Portmann, B. C. ;
Bernal, W. ;
Mcfarlane, I. G. ;
Heneghan, M. A. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2008, 28 (02) :209-220
[2]   Artificial intelligence, machine learning, and deep learning in liver transplantation [J].
Bhat, Mamatha ;
Rabindranath, Madhumitha ;
Chara, Beatriz Sordi ;
Simonetto, Douglas A. .
JOURNAL OF HEPATOLOGY, 2023, 78 (06) :1216-1233
[3]   Population-Based Epidemiology, Malignancy Risk, and Outcome of Primary Sclerosing Cholangitis [J].
Boonstra, Kirsten ;
Weersma, Rinse K. ;
van Erpecum, Karel J. ;
Rauws, Erik A. ;
Spanier, B. W. Marcel ;
Poen, Alexander C. ;
van Nieuwkerk, Karin M. ;
Drenth, Joost P. ;
Witteman, Ben J. ;
Tuynman, Hans A. ;
Naber, Anton H. ;
Kingma, Paul J. ;
van Buuren, Henk R. ;
van Hoek, Bart ;
Vleggaar, Frank P. ;
van Geloven, Nan ;
Beuers, Ulrich ;
Ponsioen, Cyriel Y. .
HEPATOLOGY, 2013, 58 (06) :2045-2055
[4]   AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma [J].
Bowlus, Christopher L. ;
Arrive, Lionel ;
Bergquist, Annika ;
Deneau, Mark ;
Forman, Lisa ;
Ilyas, Sumera I. ;
Lunsford, Keri E. ;
Martinez, Mercedes ;
Sapisochin, Gonzalo ;
Shroff, Rachna ;
Tabibian, James H. ;
Assis, David N. .
HEPATOLOGY, 2023, 77 (02) :659-702
[5]   Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis [J].
Broome, U ;
Olsson, R ;
Loof, L ;
Bodemar, G ;
Hultcrantz, R ;
Danielsson, A ;
Prytz, H ;
SandbergGertzen, H ;
Wallerstedt, S ;
Lindberg, G .
GUT, 1996, 38 (04) :610-615
[6]   Factors that Influence Health-Related Quality of Life in Patients with Primary Sclerosing Cholangitis [J].
Cheung, Angela C. ;
Patel, Harshna ;
Meza-Cardona, Javier ;
Cino, Maria ;
Sockalingam, Sanjeev ;
Hirschfield, Gideon M. .
DIGESTIVE DISEASES AND SCIENCES, 2016, 61 (06) :1692-1699
[7]   A novel prognostic model for transplant-free survival in primary sclerosing cholangitis [J].
de Vries, Elisabeth M. ;
Wang, Junfeng ;
Williamson, Kate D. ;
Leeflang, Mariska M. ;
Boonstra, Kirsten ;
Weersma, Rinse K. ;
Beuers, Ulrich ;
Chapman, Roger W. ;
Geskus, Ronald B. ;
Ponsioen, Cyriel Y. .
GUT, 2018, 67 (10) :1864-1869
[8]   Predicting outcome after liver transplantation: Utility of the model for end-stage liver disease and a newly derived discrimination function [J].
Desai, NM ;
Mange, KC ;
Crawford, MD ;
Abt, PL ;
Frank, AM ;
Markmann, JW ;
Velidedeoglu, E ;
Chapman, WC ;
Markmann, JF .
TRANSPLANTATION, 2004, 77 (01) :99-106
[9]   Primary Sclerosing Cholangitis Risk Estimate Tool (PREsTo) Predicts Outcomes of the Disease: A Derivation and Validation Study Using Machine Learning [J].
Eaton, John E. ;
Vesterhus, Mette ;
McCauley, Bryan M. ;
Atkinson, Elizabeth J. ;
Schlicht, Erik M. ;
Juran, Brian D. ;
Gossard, Andrea A. ;
LaRusso, Nicholas F. ;
Gores, Gregory J. ;
Karlsen, Tom H. ;
Lazaridis, Konstantinos N. .
HEPATOLOGY, 2020, 71 (01) :214-224
[10]   EASL Clinical Practice Guidelines on sclerosing cholangitis [J].
European Assoc Study Liver .
JOURNAL OF HEPATOLOGY, 2022, 77 (03) :761-806