The Hitchin Image in Type-D

被引:0
作者
Balasubramanian, Aswin [1 ]
Distler, Jacques [2 ]
Donagi, Ron [3 ]
Perez-Pardavila, Carlos [2 ]
机构
[1] Int Ctr Theoret Sci, Survey 151, Bengaluru 560089, India
[2] Univ Texas Austin, Dept Phys, Theory Grp, Austin, TX 78712 USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
来源
ANNALES HENRI POINCARE | 2025年
基金
美国国家科学基金会;
关键词
KAZHDAN-LUSZTIG MAP; CONJUGACY CLASSES; GEOMETRY; SYSTEMS; DUALITY;
D O I
10.1007/s00023-025-01562-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by their appearance as Coulomb branch geometries of Class S theories, we study the image of the local Hitchin map in tame Hitchin systems of type-D with residue in a special nilpotent orbit OH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_H$$\end{document}. We describe two important features that distinguish it from the type-A case studied in Balasubramanian et al. (Adv Theor Math Phys Ser 26(6):1585-1667, 2022. https://doi.org/10.4310/ATMP.2022.v26.n6.a2, arXiv:2008.01020 [hep-th]). The first feature, which we term even-type constraints, arises iff the partition label [OH]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathcal {O}_H]$$\end{document} has even parts. Our Hitchin image is non-singular and thus different from the one studied by Baraglia and Kamgarpour. We argue that our Hitchin image always globalizes to being the Hitchin base of an integrable system. The second feature, which we term odd-type constraints, is related to a particular finite group A<overline>b(OH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}_b(\mathcal {O}_H)$$\end{document} being non-trivial. This finite group parametrizes the choices for the local Hitchin base. Additionally, we also show that the finite group A<overline>b(OH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}_b(\mathcal {O}_H)$$\end{document} encodes the size of the dual special piece.
引用
收藏
页数:43
相关论文
共 44 条
[1]  
Achar Pramod., 2002, Representation Theory of the American Mathematical Society, V6, P190, DOI DOI 10.1090/S1088-4165-02-00174-7
[2]  
ADAMS JA, UNPUB
[3]  
Argyres PC, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2016)088
[4]  
Balasubramanian A, 2022, ADV THEOR MATH PHYS, V26, P1585
[5]   Masses, sheets and rigid SCFTs [J].
Balasubramanian, Aswin ;
Distler, Jacques .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (08) :1953-2054
[6]   ON THE IMAGE OF THE PARABOLIC HITCHIN MAP [J].
Baraglia, David ;
Kamgarpour, Masoud .
QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (02) :681-708
[7]   UNIPOTENT REPRESENTATIONS OF COMPLEX SEMISIMPLE GROUPS [J].
BARBASCH, D ;
VOGAN, DA .
ANNALS OF MATHEMATICS, 1985, 121 (01) :41-110
[8]   Folding of Hitchin Systems and Crepant Resolutions [J].
Beck, Florian ;
Donagi, Ron ;
Wendland, Katrin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (11) :8370-8419
[9]  
BOTTACIN F, 1995, ANN SCI ECOLE NORM S, V28, P391
[10]  
Chacaltana O, 2016, Arxiv, DOI arXiv:1601.02077