Efficient Importance Variational Approximations for State Space Models

被引:0
作者
Loaiza-Maya, Ruben [1 ]
Nibbering, Didier [1 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Multivariate Skellam model; State space models; Stochastic volatility; Variational methods; STOCHASTIC VOLATILITY; INFERENCE; BAYES;
D O I
10.1080/07350015.2024.2429468
中图分类号
F [经济];
学科分类号
02 ;
摘要
Variational methods are a potentially scalable estimation approach for state space models. However, existing methods are inaccurate or computationally infeasible for many state space models. This article proposes a variational approximation that is accurate and fast for any model with a closed-form measurement density function and a state transition distribution within the exponential family of distributions. Our approach constructs a variational approximation to the states that is close to the exact conditional posterior distribution of the states using insights from the efficient importance sampling literature. We show that our method can accurately and quickly estimate a multivariate Skellam stochastic volatility model with high-frequency tick-by-tick discrete price changes of four stocks.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[2]   Realized kernels in practice: trades and quotes [J].
Barndorff-Nielsen, O. E. ;
Hansen, P. Reinhard ;
Lunde, A. ;
Shephard, N. .
ECONOMETRICS JOURNAL, 2009, 12 (03) :C1-C32
[3]   Bayesian Dynamic Modeling of High-Frequency Integer Price Changes [J].
Barra, Istvan ;
Borowska, Agnieszka ;
Koopman, Siem Jan .
JOURNAL OF FINANCIAL ECONOMETRICS, 2018, 16 (03) :384-424
[4]   Variational Inference for Large Bayesian Vector Autoregressions [J].
Bernardi, Mauro ;
Bianchi, Daniele ;
Bianco, Nicolas .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (03) :1066-1082
[5]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[6]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[7]   Dynamic Discrete Mixtures for High-Frequency Prices [J].
Catania, Leopoldo ;
Di Mari, Roberto ;
de Magistris, Paolo Santucci .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (02) :559-577
[8]   Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility [J].
Chan, Joshua C. C. ;
Yu, Xuewen .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2022, 143
[9]   Large Hybrid Time-Varying Parameter VARs [J].
Chan, Joshua C. C. .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) :890-905
[10]  
Chopin N., 2020, An introduction to sequential Monte Carlo, V4