Look-Ahead Dispatch of Power Systems Based on Linear Alternating Current Optimal Power Flow Framework with Nonlinear Frequency Constraints Using Physics-Informed Neural Networks
被引:0
作者:
Sun, Guoqiang
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
Sun, Guoqiang
[1
]
Wang, Qihui
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
Wang, Qihui
[1
]
Chen, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
Chen, Sheng
[1
]
Wei, Zhinong
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
Wei, Zhinong
[1
]
Zang, Haixiang
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
Zang, Haixiang
[1
]
机构:
[1] Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
来源:
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY
|
2025年
/
13卷
/
03期
基金:
中国国家自然科学基金;
关键词:
Power system stability;
Generators;
Wind farms;
Stability analysis;
Load modeling;
Indexes;
Frequency control;
Frequency stability;
physics-informed neural network;
optimal power flow (OPF);
loss function;
frequency constraint;
look-ahead dispatch;
UNIT COMMITMENT;
REACTIVE POWER;
MODEL;
STABILITY;
OPF;
D O I:
10.35833/MPCE.2024.000452
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
The increasing penetration of renewable energy resources degrades the frequency stability of power systems. The present work addresses this issue by proposing a look-ahead dispatch model of power systems based on a linear alternating current optimal power flow framework with nonlinear frequency constraints. Meanwhile, the poor efficiency for solving this formulation is addressed by introducing a physics-informed neural network (PINN) to predict key frequency-control parameter values accurately. The PINN ensures that the learned results are applicable to the original physical frequency dynamics model, and applying the predicted parameter values enables the resulting dispatch model to be solved quickly and efficiently using readily available commercial solvers. The feasibility and advantages of the proposed model are demonstrated by the results of numerical computations applied to a modified IEEE 118-bus test system.
机构:
City Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Huang, Wanjun
;
Pan, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Pan, Xiang
;
Chen, Minghua
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Chen, Minghua
;
Low, Steven H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Comp & Math Sci, Parkville, Vic 3010, Australia
Univ Melbourne, CALTECH, Dept Elect Engn, Parkville, Vic 3010, AustraliaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
机构:
City Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Huang, Wanjun
;
Pan, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Pan, Xiang
;
Chen, Minghua
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China
Chen, Minghua
;
Low, Steven H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Comp & Math Sci, Parkville, Vic 3010, Australia
Univ Melbourne, CALTECH, Dept Elect Engn, Parkville, Vic 3010, AustraliaCity Univ Hong Kong, Sch Data Sci, Kowloon Tong, Hong Kong, Peoples R China