On the second largest adjacency eigenvalue of trees with given diameter

被引:0
作者
Kumar, Hitesh [1 ]
Mohar, Bojan [1 ]
Pragada, Shivaramakrishna [1 ]
Zhan, Hanmeng [2 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Worcester Polytech Inst, Worcester, MA USA
基金
加拿大自然科学与工程研究理事会;
关键词
Adjacency matrix; second largest eigenvalue; diameter; spectral centre; caterpillar; Smith graphs; MINIMAL SPECTRAL-RADIUS; GRAPHS; BOUNDS;
D O I
10.1080/03081087.2025.2484265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let $ \lambda _2(G) $ lambda 2(G) denote the second largest eigenvalue of the adjacency matrix of G. We determine the extremal trees with maximum/minimum $ \lambda _2 $ lambda 2 in the class $ \mathcal {T}(n,d) $ T(n,d) of n-vertex trees with diameter d. This contributes to the literature on $ \lambda _2 $ lambda 2-extremization over different graph families. We also revisit the notion of the spectral centre of a tree and the proof of $ \lambda _2 $ lambda 2-maximization over trees.
引用
收藏
页数:29
相关论文
共 32 条
[1]   Bounds on the second largest eigenvalue of a tree with perfect matchings [J].
An, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) :247-255
[2]  
[Anonymous], 2002, P NATL ACAD SCI USA, DOI [DOI 10.1073/pnas.192407699, DOI 10.1080/03081089008818026]
[3]  
[Anonymous], 1996, OIKOS
[4]  
Bell FK, 1998, MATH APPL, V430, P433
[5]  
Brand C, 2007, CROAT CHEM ACTA, V80, P193
[6]   On the maximum second eigenvalue of outerplanar graphs [J].
Brooks, George ;
Gu, Maggie ;
Hyatt, Jack ;
Linz, William ;
Lu, Linyuan .
DISCRETE MATHEMATICS, 2025, 348 (05)
[7]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[8]   Multiplicity of the second-largest eigenvalue of a planar graph [J].
Chen, Guantao ;
Hao, Yanli .
JOURNAL OF GRAPH THEORY, 2021, 98 (03) :445-459
[9]   Asymptotic results on the spectral radius and the diameter of graphs [J].
Cioaba, Sebastian M. ;
van Dam, Edwin R. ;
Koolen, Jack H. ;
Lee, Jae-Ho .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) :722-737
[10]   On a conjecture of V. Nikiforov [J].
Csikvari, Peter .
DISCRETE MATHEMATICS, 2009, 309 (13) :4522-4526