Multi-Modal Sensing for Enhanced Surface Roughness Prediction in CNC Machining Using an Intelligent Vise

被引:0
作者
Hsu, Ho-Chuan [1 ]
Lin, Shang-Yu [1 ]
Chen, Po-Han [1 ]
Chang, Pei-Zen [1 ]
Li, Wei-Chang [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei, Taiwan
来源
2024 IEEE SENSORS | 2024年
关键词
cutting force sensor; audio sensor; surface roughness prediction; multi-modal; CNC machining; milling;
D O I
10.1109/SENSORS60989.2024.10784677
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study showcases the utilization of an intelligent vise equipped with integrated cutting force and audio sensors to predict surface roughness during the milling process. Specifically, a piezoelectric PZT-based force sensor and a MEMS microphone are embedded within the vise jaw, enabling the acquisition of cutting force and audio signals in close proximity to the workpiece without interference. The collected data is then used to train predictive models for estimating surface roughness. The results demonstrate a root mean square error (RMSE) of 0.038 mu m, which outperforms the use of either force or audio data alone, which have RMSE values of 0.072 mu m and 0.103 mu m, respectively.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Predicting surface roughness in machining: a review [J].
Benardos, PG ;
Vosniakos, GC .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (08) :833-844
[2]   Process-machine interactions and a multi-sensor fusion approach to predict surface roughness in cylindrical plunge grinding process [J].
Botcha, Bhaskar ;
Rajagopal, Vairamuthu ;
Babu, Ramesh N. ;
Bukkapatnam, Satish T. S. .
46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 :700-711
[3]  
Chen JQ, 2017, C IND ELECT APPL, P1281, DOI 10.1109/ICIEA.2017.8283036
[4]   Force-Sensing Intelligent Vise for Cutting Dynamics Monitoring in Machining [J].
Chen, Po-Han ;
Lin, Tay-Jyi ;
Yeh, Chingwei ;
Chang, Pei-Zen ;
Li, Wei-Chang .
2023 IEEE SENSORS, 2023,
[5]   Application of ANN to estimate surface roughness using cutting parameters, force, sound and vibration in turning of Inconel 718 [J].
Deshpande, Yogesh, V ;
Andhare, Atul B. ;
Padole, Pramod M. .
SN APPLIED SCIENCES, 2019, 1 (01)
[6]   Monitoring of ultraprecision machining processes [J].
Dornfeld, DA ;
Lee, Y ;
Chang, A .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2003, 21 (08) :571-578
[7]   Bayesian linear regression for surface roughness prediction [J].
Kong, Dongdong ;
Zhu, Junjiang ;
Duan, Chaoqun ;
Lu, Lixin ;
Chen, Dongxing .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 142
[8]  
Lei Y, 2017, INTELLIGENT FAULT DIAGNOSIS AND REMAINING USEFUL LIFE PREDICTION OF ROTATING MACHINERY, P1
[9]   Surface roughness prediction in turning using artificial neural network [J].
Pal, SK ;
Chakraborty, D .
NEURAL COMPUTING & APPLICATIONS, 2005, 14 (04) :319-324
[10]   Surface roughness diagnosis in hard turning using acoustic signals and support vector machine: A PCA-based approach [J].
Papandrea, Pedro J. ;
Frigieri, Edielson P. ;
Maia, Paulo Roberto ;
Oliveira, Lucas G. ;
Paiva, Anderson P. .
APPLIED ACOUSTICS, 2020, 159