EXISTENCE AND UNIQUENESS OF THE SOLUTION TO THE INITIAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ISOTHERMAL EQUATIONS OF COMPRESSIBLE VISCOUS MULTICOMPONENT MEDIA DYNAMICS

被引:0
作者
Mamontov, A. E. [1 ]
Prokudin, D. A. [2 ]
Zakora, D. A. [3 ]
机构
[1] Siberian State Univ Telecommun & Informat Sci, Fed State Inst Higher Educ, Chair Further Math, 86 St Kirova, Novosibirsk 630102, Russia
[2] Russian Acad Sci, Lavrentyev Inst Hydrodynam, Siberian Branch, 15 Pr Lavrenteva, Novosibirsk 630090, Russia
[3] VI Vernadsky Crimean Fed Univ, 4 Pr Vernadskogo, Simferopol 295007, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2025年 / 22卷 / 01期
关键词
compressible viscous medium; multicomponent flows; viscosity matrix; boundary value problem; existence and uniqueness theorem; NAVIER-STOKES EQUATIONS; ASYMPTOTIC-BEHAVIOR; BAROTROPIC FLUID; GLOBAL EXISTENCE; WEAK SOLUTIONS; CAUCHY-PROBLEM; MULTI-FLUIDS; MOTION; MIXTURE; SOLVABILITY;
D O I
10.33048/semi.2025.22.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An initial boundary value problem is considered for one-dimensional equations of the dynamics of compressible multicomponent media. A global theorem of existence and uniqueness of a strong solution is proved without restrictions on the structure of the viscosity matrix except for the standard properties of symmetry and positivity
引用
收藏
页码:354 / 384
页数:31
相关论文
共 54 条
[1]   SOLVABILITY IN THE LARGE OF A SYSTEM OF EQUATIONS OF THE ONE-DIMENSIONAL MOTION OF AN INHOMOGENEOUS VISCOUS HEAT-CONDUCTING GAS [J].
AMOSOV, AA ;
ZLOTNIK, AA .
MATHEMATICAL NOTES, 1992, 52 (1-2) :753-763
[2]  
Amosov AA, 1995, DIFF EQUAT+, V31, P1056
[3]  
Antontsev S.N., 1990, Studies in Mathematics and its Applications, V22
[4]  
ATKIN RJ, 1976, J I MATH APPL, V17, P153
[5]  
Belov S.Ya., 1982, Din. Splosh. Sredy, V56, P22
[6]   Global Weak Solutions to One-Dimensional Non-Conservative Viscous Compressible Two-Phase System [J].
Bresch, Didier ;
Huang, Xiangdi ;
Li, Jing .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) :737-755
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]   DISCONTINUOUS SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLOW [J].
HOFF, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :15-46
[9]   GLOBAL WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR THE NAVIER-STOKES EQUATIONS OF NONISENTROPIC FLOW WITH DISCONTINUOUS INITIAL DATA [J].
HOFF, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (01) :33-74
[10]   ON INITIAL-BOUNDARY VALUE-PROBLEMS FOR A VISCOUS, HEAT-CONDUCTING, ONE-DIMENSIONAL REAL-GAS [J].
JIANG, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 110 (02) :157-181