A Novel Multiaxial High-Cycle Fatigue Life Prediction Model Based on Critical Plane-Intrinsic Damage Dissipation

被引:0
作者
Ren, Zhongkai [1 ,2 ]
Liu, Lixin [1 ,2 ]
Li, Haoran [3 ]
Xu, Wei [1 ,2 ]
Chen, Peng [1 ,4 ,5 ]
Wang, Tao [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Coll Mech Engn, Taiyuan, Peoples R China
[2] Minist Educ, Engn Res Ctr Adv Met Composites Forming Technol &, Taiyuan, Peoples R China
[3] Zhejiang Sci Tech Univ, Sch Mech Engn, Hangzhou, Peoples R China
[4] Natl Key Lab Met Forming Technol & Heavy Equipment, Xian, Peoples R China
[5] China Natl Heavy Machinery Res Inst Co Ltd, Xian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
critical plane approach; fatigue life prediction; intrinsic damage dissipation; multiaxial high-cycle fatigue; MEAN STRESS; ELASTIC-MODULUS; PLASTIC-DEFORMATION; CRITERION; MECHANICS; FAILURE; PHASE; STEEL; LIMIT;
D O I
10.1111/ffe.70003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The critical plane approach identifies the crack initiation plane and propagation directions, whereas intrinsic damage dissipation quantifies energy dissipation directly correlated with fatigue damage. This study proposes a multiaxial high-cycle fatigue (HCF) failure criterion and a life prediction model by combining both theories and explicitly incorporating mean stress effects. The proposed criterion employs four critical plane parameters: maximum shear stress, shear stress amplitude, maximum normal stress, and normal stress amplitude. This methodology demonstrates clear physical significance. Validation against experimental datasets demonstrates close agreement between model predictions and empirical results in both fatigue limit determination and life estimation. Comparative evaluations against classic and recent criteria reveal statistically superior predictive accuracy of the proposed criterion. The method shows its promising potential as a tool for multiaxial HCF engineering analysis.
引用
收藏
页数:14
相关论文
共 71 条
[31]  
Li W. Q., 2023, Chinese Journal of Theoretical and Applied Mechanics, V56, P149
[32]   A three-dimensional multi-scale polycrystalline plasticity model coupled with damage for pure Ti with harmonic structure design [J].
Liu, Jia ;
Li, Jia ;
Dirrasa, Guy ;
Ameyama, Kei ;
Cazes, Fabien ;
Ota, Mie .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 100 :192-207
[33]   Fatigue life prediction based on the hysteretic loop evolution of carbon steel under tensile cyclic loading [J].
Liu, Shuyao ;
Wang, Xibin ;
Liu, Zhibing ;
Wang, Yong ;
Chen, Hongtao ;
Wang, Pai .
ENGINEERING FAILURE ANALYSIS, 2022, 142
[34]   A multiaxial high-cycle fatigue life evaluation model for notched structural components [J].
Liu, Xiao-Yong ;
Su, Tie-Xiong ;
Zhang, Yi ;
Yuan, Mei-Ni .
INTERNATIONAL JOURNAL OF FATIGUE, 2015, 80 :443-448
[35]   Multiaxial high-cycle fatigue criterion and life prediction for metals [J].
Liu, YM ;
Mahadevan, S .
INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (07) :790-800
[36]  
Maddox S. J., 1989, Fatigue Behaviour of Welded Joints
[37]   Multiaxial high-cycle fatigue criteria and life prediction: Application to gas turbine blade [J].
Maktouf, W. ;
Ammar, K. ;
Ben Naceur, I. ;
Sai, K. .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 92 :25-35
[38]   Multiaxial fatigue life estimation based on a piecewise ruled S-N surface [J].
Mamiya, E. N. ;
Castro, F. C. ;
Algarte, R. D. ;
Araujo, J. A. .
INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (04) :529-540
[39]  
MATAKE T, 1977, B JSME, V20, P257, DOI 10.1299/jsme1958.20.257
[40]   A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE [J].
MCDIARMID, DL .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1991, 14 (04) :429-453