This study analyzes the factors influencing the proportions of blank and null votes in Brazilian municipalities during the 2018 presidential elections. The behavior of the variable of interest is examined using unit regression models within the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) framework. Specifically, five different unit regression models are explored, beta, simplex, Kumaraswamy, unit Weibull, and reflected unit Burr XII regressions, each incorporating submodels for both indexed distribution parameters. The beta regression model emerges as the best fit through rigorous model selection and diagnostic procedures. The findings reveal that the disaggregated municipal human development index (MHDI), particularly its income, longevity, and education dimensions, along with the municipality's geographic region, significantly affect voting behavior. Notably, higher income and longevity values are linked to greater proportions of blank and null votes, whereas the educational level exhibits a negative relationship with the variable of interest. Additionally, municipalities in the Southeast region tend to have higher average proportions of blank and null votes. In terms of variability, the ability of a municipality's population to acquire goods and services is shown to negatively influence the dispersion of vote proportions, while municipalities in the Northeast, North, and Southeast regions exhibit distinct patterns of variation compared to other regions. These results provide valuable insights into electoral participation's socioeconomic and regional determinants, contributing to broader discussions on political engagement and democratic representation in Brazil.