CHEBYSHEV FEATURE NEURAL NETWORK FOR ACCURATE FUNCTION APPROXIMATION

被引:0
作者
Xu, Zhongshu [1 ]
Chen, Yuan [1 ]
Xiu, Dongbin [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
来源
JOURNAL OF MACHINE LEARNING FOR MODELING AND COMPUTING | 2025年 / 6卷 / 02期
关键词
deep neural networks; function approximation; Chebyshev function; GOVERNING EQUATIONS; INVERSE PROBLEMS; DEEP; ALGORITHM;
D O I
10.1615/JMachLearnModelComput.2025056536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new deep neural network (DNN) architecture capable of approximating functions up to machine accuracy. Termed the Chebyshev feature neural network (CFNN), the new structure employs Chebyshev functions with learnable frequencies as the first hidden layer, followed by the standard fully connected hidden layers. The learnable frequencies of the Chebyshev layer are initialized with exponential distributions to cover a wide range of frequencies. Combined with a multistage training strategy, we demonstrate that this CFNN structure can achieve machine accuracy during training. A comprehensive set of numerical examples for dimensions up to 20 are provided to demonstrate the effectiveness and scalability of the method.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 24 条
[1]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[2]  
Chowdhary K., 2020, Natural language processing. Fundamentals of artificial intelligence, P603, DOI DOI 10.1007/978-81-322-3972-7_19
[3]   Spectral Neural Operators [J].
Fanaskov, V. S. ;
Oseledets, I. V. .
DOKLADY MATHEMATICS, 2023, 108 (SUPPL 2) :S226-S232
[4]  
Hong Q., 2022, arXiv
[5]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[6]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1]
[7]   Deep Convolutional Neural Network for Inverse Problems in Imaging [J].
Jin, Kyong Hwan ;
McCann, Michael T. ;
Froustey, Emmanuel ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4509-4522
[8]   NETT: solving inverse problems with deep neural networks [J].
Li, Housen ;
Schwab, Johannes ;
Antholzer, Stephan ;
Haltmeier, Markus .
INVERSE PROBLEMS, 2020, 36 (06)
[9]   Performance Analysis and Dynamic Evolution of Deep Convolutional Neural Network for Electromagnetic Inverse Scattering [J].
Li, Lianlin ;
Wang, Long Gang ;
Teixeira, Fernando L. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (11) :2259-2263
[10]  
Li ZY, 2021, Arxiv, DOI arXiv:2010.08895