Leveraging Zero-Shot Detection Mechanisms to Accelerate Image Annotation for Machine Learning in Wild Blueberry (Vaccinium angustifolium Ait.)

被引:1
作者
Mullins, Connor C. [1 ]
Esau, Travis J. [1 ]
Zaman, Qamar U. [1 ]
Toombs, Chloe L. [1 ]
Hennessy, Patrick J. [1 ]
机构
[1] Dalhousie Univ, Fac Agr, Dept Engn, Truro, NS B2N 5E3, Canada
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
precision agriculture; object detection; automated annotation; grounding DINO; YOLO-World;
D O I
10.3390/agronomy14122830
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study conducted an analysis of zero-shot detection capabilities using two frameworks, YOLO-World and Grounding DINO, on a selection of images in the wild blueberry (Vaccinium angustifolium Ait.) cropping system. The datasets included ripe wild blueberries, hair fescue (Festuca filiformis Pourr.), blueberry buds, and red leaf disease (Exobasidium vaccinii). Key performance metrics such as Intersection over Union (IoU), precision, recall, and F1 score were utilized for model comparison. Grounding DINO consistently achieved superior performance across all metrics and datasets, achieving significantly higher mean IoUs on berries, red leaf, hair fescue, and buds (0.642, 0.921, 0.735, and 0.629, respectively) compared to YOLO-World (0.516, 0.567, 0.232, and 0.408, respectively). Evidenced by their high recall rates relative to precision, the models displayed a preference for identifying true positives at the cost of increasing false positives. Grounding DINO's higher precision (overall mean of 0.672), despite the tendency to over-detect, indicated a better balance in minimizing false positives than YOLO-World (overall mean of 0.501). These findings contrast with the foundational study of YOLO-World where it demonstrated superior performance on standard datasets, highlighting the importance of dataset characteristics and optimization processes in model performance. The practical implications of this study include providing a solution for accelerated object detection image annotation in the wild blueberry cropping system. This work, representing a significant advancement in facilitating accurate and efficient annotation of wild blueberry datasets, guides future research in the application of zero-shot detection models to agricultural datasets.
引用
收藏
页数:14
相关论文
共 46 条
[1]  
Ahmed N, 2022, Arxiv, DOI arXiv:2209.12443
[2]  
Bator M., 2019, Mach. Graph. Vis, V28, P69, DOI [10.22630/MGV.2019.28.1.7, DOI 10.22630/MGV.2019.28.1.7]
[3]   Identifying hair fescue in wild blueberry fields using drone images for precise application of granular herbicide [J].
Bilodeau, Mathieu F. ;
Esau, Travis J. ;
Maceachern, Craig B. ;
Farooque, Aitazaz A. ;
White, Scott N. ;
Zaman, Qamar U. .
SMART AGRICULTURAL TECHNOLOGY, 2023, 3
[4]   Maximizing human effort for analyzing scientific images: A case study using digitized herbarium sheets [J].
Brenskelle, Laura ;
Guralnick, Rob P. ;
Denslow, Michael ;
Stucky, Brian J. .
APPLICATIONS IN PLANT SCIENCES, 2020, 8 (06)
[5]  
Brust CA, 2018, Arxiv, DOI [arXiv:1809.09875, DOI 10.48550/ARXIV.1809.09875]
[6]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[7]  
Cheng Tianheng, 2024, P IEEE CVF C COMP VI
[8]  
Cordier A., 2022, arXiv
[9]   Modelling the impacts of pests and diseases on agricultural systems [J].
Donatelli, M. ;
Magarey, R. D. ;
Bregaglio, S. ;
Willocquet, L. ;
Whish, J. P. M. ;
Savary, S. .
AGRICULTURAL SYSTEMS, 2017, 155 :213-224
[10]   Machine vision smart sprayer for spot-application of agrochemical in wild blueberry fields [J].
Esau, Travis ;
Zaman, Qamar ;
Groulx, Dominic ;
Farooque, Aitazaz ;
Schumann, Arnold ;
Chang, Young .
PRECISION AGRICULTURE, 2018, 19 (04) :770-788