KAM theorems for nonlinear higher dimensional Schrödinger equation systems in three different ways

被引:0
作者
Chang, Ningning [1 ]
Sun, Yingnan [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 150卷
关键词
KAM theory; Hamiltonian systems; Schr & ouml; dinger equation system; QUASI-PERIODIC SOLUTIONS; HAMILTONIAN PERTURBATIONS; SCHRODINGER-EQUATION; WAVE-EQUATIONS; NLS;
D O I
10.1016/j.cnsns.2025.108981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an abstract KAM (Kolmogorov-Arnold-Moser) theorem constructed by Zhou (2017) in different ways and apply it to the nonlinear Schr & ouml;dinger equation systems with real Fourier Multiplier. We prove the existence of a class of Whitney smooth small amplitude quasi-periodic solutions for more types of equation systems.
引用
收藏
页数:17
相关论文
共 26 条
[1]   Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :229-286
[2]   Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
NONLINEARITY, 2012, 25 (09) :2579-2613
[3]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[4]  
Bourgain J., 1994, IMRN, V1994, P475, DOI DOI 10.1155/S1073792894000516
[5]  
Bourgain J., 2005, Annals of Mathematics Studies, V158
[6]   NEWTONS METHOD AND PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
CRAIG, W ;
WAYNE, CE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (11) :1409-1498
[7]   KAM for the nonlinear Schrodinger equation [J].
Eliasson, L. Hakan ;
Kuksin, Sergei B. .
ANNALS OF MATHEMATICS, 2010, 172 (01) :371-435
[8]   Local well posedness for a system of quasilinear PDEs modelling suspension bridges [J].
Feola, Roberto ;
Giuliani, Filippo ;
Iandoli, Felice ;
Massetti, Jessica Elisa .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 240
[9]  
Gazzola F., 2015, MATH MODELS SUSPENSI, V15, P1, DOI [10.1007/978-3-319-15434-3, DOI 10.1007/978-3-319-15434-3]
[10]   A KAM Theorem for Two Dimensional Completely Resonant Reversible Schrodinger Systems [J].
Geng, Jiansheng ;
Lou, Zhaowei ;
Sun, Yingnan .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) :1611-1641