Precise Parameter Estimation for Polymer Electrolyte Membrane Fuel Cells Using Two Sophisticated Metaheuristic Optimization Techniques

被引:0
作者
Menesy, Ahmed S. [1 ]
Sultan, Hamdy M. [2 ]
Elkadeem, Mohamed R. [3 ]
Kotb, M. Kotb [3 ]
Elgendy, Ibrahim A. [4 ]
Zaery, Mohamed [5 ]
Abido, Mohammad A. [1 ,3 ]
Kamel, Salah [6 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[2] Minia Univ, Dept Elect Engn, Fac Engn, Al Minya 61517, Egypt
[3] KFUPM, Interdisciplinary Res Ctr Sustainable Energy Syst, Dhahran 31261, Saudi Arabia
[4] KFUPM, Sch Business, IRC Finance & Digital Econ, Dhahran 31261, Saudi Arabia
[5] KFUPM, KA CARE Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
[6] Aswan Univ, Dept Elect Engn, Fac Engn, Aswan 81542, Egypt
来源
2024 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE, ISPEC | 2024年
关键词
PEMFC; dung beetle optimizer; rapidly exploring random tree; meta-heuristic optimization; parameter estimation; polarization curve simulation; statistical analysis;
D O I
10.1109/ISPEC59716.2024.10892373
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polymer electrolyte membrane fuel cells (PEMFCs) possess significant potential for contributing to clean energy production. The challenge of accurately modeling their polarization curves and understanding their operational characteristics has attracted great attention from researchers. This paper applies two meta-heuristic optimization techniques, namely, the dung beetle optimizer (DBO) and the rapidly exploring random tree optimization (RRTO) algorithm, to determine the unknown parameters critical for precise PEMFC modeling. The robustness of these techniques is evaluated using two different commercial PEMFC stacks under varying operating conditions. In this problem, the objective function is represented by the sum of squared errors (SSE), quantifying the discrepancy between the experimentally measured data and the outcomes produced using the estimated parameters. Also, A thorough statistical analysis incorporating various indices has been conducted to validate the robustness of the proposed approaches. A comprehensive comparison with well-known optimization strategies confirms that the DBO consistently achieves superior accuracy and convergence speed across all cases. The polarization curves obtained using DBO and RRTO closely align with the experimental data, confirming the robustness of these methods. Notably, the DBO outperforms all compared algorithms, establishing itself as the most effective PEMFC parameter estimation and optimization tool.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 13 条
[1]   Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm [J].
Alizadeh, Mehrzad ;
Torabi, Farschad .
ENERGY CONVERSION AND MANAGEMENT, 2021, 229
[2]   Parameters Estimation of Proton Exchange Membrane Fuel Cell Model Based on an Improved Walrus Optimization Algorithm [J].
Alqahtani, Ayedh H. ;
Hasanien, Hany M. ;
Alharbi, Mohammed ;
Chuanyu, Sun .
IEEE ACCESS, 2024, 12 :74979-74992
[3]   Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm [J].
Elfar, Medhat Hegazy ;
Fawzi, Mahmoud ;
Serry, Ahmed S. ;
Elsakka, Mohamed ;
Elgamal, Mohamed ;
Refaat, Ahmed .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 :1113-1128
[4]  
Menesy A.S., 2020, 2020 INT YOUTH C RAD, P1, DOI [10.1109/reepe49198.2020.9059219, 10.1109/REEPE49198.2020.9059219, DOI 10.1109/REEPE49198.2020.9059219]
[5]   A modified slime mold algorithm for parameter identification of hydrogen-powered proton exchange membrane fuel cells [J].
Menesy, Ahmed S. ;
Sultan, Hamdy M. ;
Zayed, Mohamed E. ;
Habiballah, Ibrahim O. ;
Dmitriev, Stepan ;
Safaraliev, Murodbek ;
Kamel, Salah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 :853-874
[6]   Developing and Applying Chaotic Harris Hawks Optimization Technique for Extracting Parameters of Several Proton Exchange Membrane Fuel Cell Stacks [J].
Menesy, Ahmed S. ;
Sultan, Hamdy M. ;
Selim, Ali ;
Ashmawy, Mohamed G. ;
Kamel, Salah .
IEEE ACCESS, 2020, 8 :1146-1159
[7]   Precise parameter identification of a PEMFC model using a robust enhanced salp swarm algorithm [J].
Saidi, Salem ;
Marrouchi, Sahbi ;
Alhasnawi, Bilal Naji ;
Pathak, Pawan Kumar ;
Alshammari, Obaid ;
Albaker, Abdullah ;
Abbassi, Rabeh .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 71 :937-951
[8]   Enhancing parameter identification for proton exchange membrane fuel cell using modified manta ray foraging optimization [J].
Sultan, Hamdy M. ;
Menesy, Ahmed S. ;
Korashy, Ahmed ;
Hussien, Abdelazim G. ;
Kamel, Salah .
ENERGY REPORTS, 2024, 12 :1987-2013
[9]   Optimal Values of Unknown Parameters of Polymer Electrolyte Membrane Fuel Cells Using Improved Chaotic Electromagnetic Field Optimization [J].
Sultan, Hamdy M. ;
Menesy, Ahmed S. ;
Kamel, Salah ;
Turky, Rania A. ;
Hasanien, H. M. ;
Al-Durra, Ahmed .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (06) :6669-6687
[10]   Recent advances in Rapidly-exploring random tree: A review [J].
Xu, Tong .
HELIYON, 2024, 10 (11)