Unitarity of minimal W-algebras and their representations II: Ramond sector

被引:0
作者
Kac, Victor G. [1 ]
Frajria, Pierluigi Moseneder [2 ]
Papi, Paolo [3 ]
机构
[1] MIT, Dept Math, 77 Mass Ave, Cambridge, MA 02139 USA
[2] Politecn Milan, Polo Reg Como, Via Anzani 42, I-22100 Como, Italy
[3] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
来源
JAPANESE JOURNAL OF MATHEMATICS | 2025年
关键词
almost compact involution; unitary representation of a vertex algebra; free field realization; Ramond twisted representation; Ramond extremal representation; twisted quantum Hamiltonian reduction; Zhu algebra; LIE-SUPERALGEBRAS; QUANTUM REDUCTION; MODULES; FINITE;
D O I
10.1007/s11537-025-2427-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study unitary Ramond twisted representations of minimal W-algebras. We classify all such irreducible highest weight representations with highest weight which is not Ramond extremal (unitarity in the Ramond extremal case, as well as in the untwisted extremal case, remains open). We compute the characters of these representations and deduce from them the denominator identities for all superconformal algebras in the Neveu-Schwarz and Ramond sector. Some of the results rely on conjectures about the properties of the quantum Hamiltonian reduction functor in the Ramond sector.
引用
收藏
页数:113
相关论文
共 24 条
[1]   Defining Relations for Minimal Unitary Quantum Affine W-Algebras [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
[2]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152
[3]   Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture [J].
Arakawa, T .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (03) :435-478
[4]   JOSEPH IDEALS AND LISSE MINIMAL W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Moreau, Anne .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (02) :397-417
[5]  
Bezrukavnikov R, 2024, PURE APPL MATH Q, V20, P81
[6]   Finite vs affine W-algebras [J].
De Sole, Alberto ;
Kac, Victor G. .
JAPANESE JOURNAL OF MATHEMATICS, 2006, 1 (01) :137-261
[7]   Unitary vertex operator algebras [J].
Dong, Chongying ;
Lin, Xingjun .
JOURNAL OF ALGEBRA, 2014, 397 :252-277
[8]   ON THE UNITARY REPRESENTATIONS OF N=2 AND N=4 SUPERCONFORMAL ALGEBRAS [J].
EGUCHI, T ;
TAORMINA, A .
PHYSICS LETTERS B, 1988, 210 (1-2) :125-132
[9]   UNITARY REPRESENTATIONS OF THE N=4 SUPERCONFORMAL ALGEBRA [J].
EGUCHI, T ;
TAORMINA, A .
PHYSICS LETTERS B, 1987, 196 (01) :75-81
[10]  
Gorelik M, 2018, COMMUN MATH PHYS, V364, P635, DOI 10.1007/s00220-018-3246-1