Results on Ulam-Hyers stability of nonlinear Chen system with fractional-order derivative

被引:0
作者
Boulaaras, Salah [1 ]
Arunachalam, Selvam [2 ]
Sriramulu, Sabarinathan [3 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
[2] Vignans Fdn Sci Technol & Res, Sch Appl Sci & Humanities, Dept Math & Stat, Guntur, Andhra Pradesh, India
[3] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Math, Kattankulathur, Tamil Nadu, India
关键词
Caputo-Fabrizio fractional-order derivative; chaotic behavior; fixed-point approach; nonlinear Chen system; Ulam-Hyers stability; DIFFERENTIAL-EQUATIONS; CHAOTIC ATTRACTOR; EXISTENCE;
D O I
10.1002/asjc.3656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on the stability analysis of fractional-order derivative for nonlinear Chen chaotic systems using Caputo-Fabrizio fractional derivative. The primary objective is to examine the criteria for existence and uniqueness using the fixed-point technique. The study explores Ulam stability results and discusses other significant findings for the proposed system. Numerical schemes are employed using Lagrange polynomial interpolation with Caputo-Fabrizio fractional derivative. Simulated graphical representations are generated for different fractional-order values, and the simulation results validate the efficacy and practical applicability of the theoretical findings.
引用
收藏
页数:14
相关论文
共 40 条
[1]   A new four-scroll chaotic attractor and its engineering applications [J].
Akgul, Akif ;
Moroz, Irene ;
Pehlivan, Ihsan ;
Vaidyanathan, Sundarapandian .
OPTIK, 2016, 127 (13) :5491-5499
[2]  
Almalki N., 2024, Part. Differ. Equ. Appl. Math, V10, DOI DOI 10.1016/J.PADIFF.2024.100723
[3]   Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos [J].
Arik, Irem Akbulut ;
Araz, Sedaigret .
COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01) :169-192
[4]   Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Zeng, Sheng-Da .
CHAOS SOLITONS & FRACTALS, 2017, 102 :99-105
[5]   Chaos and stability analysis of the nonlinear fractional-order autonomous system [J].
Boulaaras, Salah ;
Sriramulu, Sabarinathan ;
Arunachalam, Selvam ;
Allahem, Ali ;
Alharbi, Asma ;
Radwan, Taha .
ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 :278-291
[6]  
Caputo M., 2015, PROGR FRACTIONAL DIF, V1, P1, DOI DOI 10.12785/PFDA/010201
[7]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[8]   Chaotic hyperjerk systems [J].
Chlouverakis, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :739-746
[9]   Decay rate of the solutions to the Cauchy problem of the Lord Shulman thermoelastic Timoshenko model with distributed delay [J].
Choucha, Abdelbaki ;
Boulaaras, Salah ;
Jan, Rashid ;
Alnegga, Mohammad .
DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
[10]   Decay rate of the solutions to the Cauchy problem of the Lord Shulman thermoelastic Timoshenko model with microtemperature effect [J].
Choucha, Abdelbaki ;
Saad, Sofian Abuelbacher Adam ;
Jan, Rashid ;
Boulaaras, Salah .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (04)