Machine Learning-Based Discrimination of Cardiovascular Outcomes in Patients With Hypertrophic Cardiomyopathy

被引:4
作者
Rhee, Tae-Min [1 ,2 ]
Ko, Yeon-Kyoung [3 ,4 ]
Kim, Hyung-Kwan [1 ]
Lee, Seung-Bo [4 ]
Kim, Bong-Seong [5 ]
Choi, Hong-Mi [6 ,7 ]
Hwang, In-Chang [6 ,7 ]
Park, Jun-Bean [1 ]
Yoon, Yeonyee E. [6 ,7 ]
Kim, Yong-Jin [1 ]
Cho, Goo-Yeong [6 ,7 ]
机构
[1] Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Healthcare Syst Gangnam Ctr, Dept Internal Med, Seoul, South Korea
[3] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[4] Keimyung Univ, Dept Med Informat, Sch Med, Daegu, South Korea
[5] Soongsil Univ, Dept Stat & Actuarial Sci, Seoul, South Korea
[6] Seoul Natl Univ, Cardiovasc Ctr, Bundang Hosp, Seongnam, South Korea
[7] Seoul Natl Univ, Bundang Hosp, Dept Internal Med, Seongnam, South Korea
来源
JACC-ASIA | 2024年 / 4卷 / 05期
关键词
heart failure; hypertrophic cardiomyopathy; machine learning; prediction model; prognosis; SUDDEN CARDIAC DEATH; EUROPEAN ASSOCIATION; RISK STRATIFICATION; AMERICAN SOCIETY; ECHOCARDIOGRAPHY; RECOMMENDATIONS; HYPERTENSION; PREDICTION; EVENTS; UPDATE;
D O I
10.1016/j.jacasi.2023.12.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Current risk stratification strategies for patients with hypertrophic cardiomyopathy (HCM) are limited to traditional methodologies. OBJECTIVES The authors aimed to establish machine learning (ML)-based models to discriminate major cardiovascular events in patients with HCM. METHODS We enrolled consecutive HCM patients from 2 tertiary referral centers and used 25 clinical and echocardiographic features to discriminate major adverse cardiovascular events (MACE), including all-cause death, admission for heart failure (HF-adm), and stroke. The best model was selected for each outcome using the area under the receiver operating characteristic curve (AUROC) with 20-fold cross-validation. After testing in the external validation cohort, the relative importance of features in discriminating each outcome was determined using the SHapley Additive exPlanations (SHAP) method. RESULTS In total, 2,111 patients with HCM (age 61.4 f 13.6 years; 67.6% men) were analyzed. During the median 4.0 years of follow-up, MACE occurred in 341 patients (16.2%). Among the 4 ML models, the logistic regression model achieved the best AUROC of 0.800 (95% CI: 0.760-0.841) for MACE, 0.789 (95% CI: 0.736-0.841) for all-cause death, 0.798 (95% CI: 0.736-0.860) for HF-adm, and 0.807 (95% CI: 0.754-0.859) for stroke. The discriminant ability of the logistic regression model remained excellent when applied to the external validation cohort for MACE (AUROC = 0.768), all-cause death (AUROC = 0.750), and HF-adm (AUROC = 0.806). The SHAP analysis identified left atrial diameter and hypertension as important variables for all outcomes of interest. CONCLUSIONS The proposed ML models incorporating various phenotypes from patients with HCM accurately discriminated adverse cardiovascular events and provided variables with high importance for each outcome. (JACC: Asia 2024;4:375-386) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:375 / 386
页数:12
相关论文
共 32 条
[1]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[2]   Temporal Trend of Age at Diagnosis in Hypertrophic Cardiomyopathy An Analysis of the International Sarcomeric Human Cardiomyopathy Registry [J].
Canepa, Marco ;
Fumagalli, Carlo ;
Tini, Giacomo ;
Vincent-Tompkins, Justin ;
Day, Sharlene M. ;
Ashley, Euan A. ;
Mazzarotto, Francesco ;
Ware, James S. ;
Michels, Michelle ;
Jacoby, Daniel ;
Ho, Carolyn Y. ;
Olivotto, Iacopo .
CIRCULATION-HEART FAILURE, 2020, 13 (09) :E007230
[3]   Prognosis of patients with hypertrophic cardiomyopathy and low-normal left ventricular ejection fraction [J].
Choi, You-Jung ;
Kim, Hyung-Kwan ;
Hwang, In-Chang ;
Park, Chan Soon ;
Rhee, Tae-Min ;
Lee, Hyun-Jung ;
Park, Jun-Bean ;
Yoon, Yeonyee Elizabeth ;
Lee, Seung-Pyo ;
Cho, Goo-Yeong ;
Kim, Yong-Jin .
HEART, 2023, 109 (10) :771-778
[4]   Augmented risk of ischemic stroke in hypertrophic cardiomyopathy patients without documented atrial fibrillation [J].
Choi, You-Jung ;
Kim, Bongseong ;
Rhee, Tae-Min ;
Lee, Hyun-Jung ;
Lee, Heesun ;
Park, Jun-Bean ;
Lee, Seung-Pyo ;
Han, Kyung-Do ;
Kim, Yong-Jin ;
Kim, Hyung-Kwan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy [J].
Fahmy, Ahmed S. ;
Rowin, Ethan J. ;
Manning, Warren J. ;
Maron, Martin S. ;
Nezafat, Reza .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[6]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[7]   Myocardial Remodeling in Hypertension: Toward a New View of Hypertensive Heart Disease [J].
Gonzalez, Arantxa ;
Ravassa, Susana ;
Lopez, Begona ;
Moreno, Maria U. ;
Beaumont, Javier ;
San Jose, Gorka ;
Querejeta, Ramon ;
Bayes-Genis, Antoni ;
Diez, Javier .
HYPERTENSION, 2018, 72 (03) :549-558
[8]   Stroke and Embolic Events in Hypertrophic Cardiomyopathy Risk Stratification in Patients Without Atrial Fibrillation [J].
Haruki, Shintaro ;
Minami, Yuichiro ;
Hagiwara, Nobuhisa .
STROKE, 2016, 47 (04) :936-942
[9]   Effect of Renal Dysfunction on Risk of Sudden Cardiac Death in Patients With Hypertrophic Cardiomyopathy [J].
Higuchi, Satoshi ;
Minami, Yuichiro ;
Shoda, Morio ;
Shirotani, Shota ;
Kanai, Miwa ;
Kataoka, Shohei ;
Yazaki, Kyoichiro ;
Saito, Chihiro ;
Haruki, Shintaro ;
Yagishita, Daigo ;
Ejima, Koichiro ;
Hagiwara, Nobuhisa .
AMERICAN JOURNAL OF CARDIOLOGY, 2021, 144 :131-136
[10]   Differences in apical and non-apical types of hypertrophic cardiomyopathy: a prospective analysis of clinical, echocardiographic, and cardiac magnetic resonance findings and outcome from 350 patients [J].
Kim, Eun Kyoung ;
Lee, Sang-Chol ;
Hwang, Ji Won ;
Chang, Sung-A ;
Park, Sung-Ji ;
On, Young Keun ;
Park, Kyoung Min ;
Choe, Yeon Hyeon ;
Kim, Sung-Mok ;
Park, Seung Woo ;
Oh, Jae K. .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2016, 17 (06) :678-686