β-robust virtual element method for distributed order time-fractional reaction-diffusion equation with variable coefficients

被引:0
作者
Chen, Yanping [1 ]
Lei, Jian [2 ]
Gu, Qiling [2 ]
Zhou, Jianwei [3 ]
Qin, Fangfang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Linyi Univ, Sch Math & Stat, Linyi 276005, Peoples R China
关键词
Virtual element method; Distributed order derivative; Time-fractional equation; Singularity; Variable coefficients; beta-robust error estimate; STOKES EQUATIONS; ERROR ESTIMATE; SCHEME; APPROXIMATION; GUIDE;
D O I
10.1007/s11075-025-02052-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a distributed-order time-fractional equation with variable coefficients on polygonal meshes is considered. Initially, the distributed-order time-fractional derivative is converted into a multi-term time-fractional derivative. The L1 scheme on graded meshes is then employed to handle the singularity of the time-fractional derivative. For variable coefficients in the spatial direction, modified approximated bilinear forms of the virtual element method are constructed to maintain optimal convergence. Utilizing the beta-robust discrete fractional Gronwall inequality, beta-robust stability and optimal error estimates of the fully discrete scheme in the L-2-norm are established. These results remain valid and stable as beta -> 1(-). Numerical results are presented to illustrate the sharpness of the theoretical findings.
引用
收藏
页数:29
相关论文
共 58 条
[1]   A Galerkin meshless reproducing kernel particle method for numerical solution of neutral delay time-space distributed-order fractional damped diffusion-wave equation [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2021, 169 :44-63
[2]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]   Numerical simulation of multi-dimensional distributed-order generalized Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2017, 89 (02) :1415-1432
[5]   Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation [J].
Cao, Dewei ;
Chen, Hu .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) :707-729
[6]   A fast Alikhanov algorithm with general nonuniform time steps for a two-dimensional distributed-order time-space fractional advection-dispersion equation [J].
Cao, Jiliang ;
Xiao, Aiguo ;
Bu, Weiping .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) :2885-2908
[7]  
Caputo M, 2003, ANN GEOPHYS-ITALY, V46, P223
[8]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[9]   Local error estimate of L1 scheme for linearized time fractional KdV equation with weakly singular solutions [J].
Chen, Hu ;
Chen, Mengyi ;
Sun, Tao ;
Tang, Yifa .
APPLIED NUMERICAL MATHEMATICS, 2022, 179 :183-190
[10]   α-robust H1-norm error estimate of nonuniform Alikhanov scheme for fractional sub-diffusion equation [J].
Chen, Hu ;
Wang, Yue ;
Fu, Hongfei .
APPLIED MATHEMATICS LETTERS, 2022, 125