Iron detection method based on high-resolution magnetic field camera

被引:0
作者
Nicolas, Hugo [1 ,2 ]
Vergne, Celine [1 ,2 ,3 ]
Pascal, Joris [1 ]
机构
[1] Univ Appl Sci & Arts Northwestern Switzerland, Sch Life Sci, Inst Med Engn & Med Informat, CH-4132 Muttenz, Switzerland
[2] Univ Strasbourg, ICube Lab, CNRS, F-67000 Strasbourg, France
[3] Univ Basel, Dept Biomed Engn, CH-4123 Allschwil, Switzerland
来源
2024 IEEE SENSORS | 2024年
关键词
Magnetic sensors; magnetoimpedance sensors; high-resolution measurements; particle detection; quality assessment; magnetic field camera (MFC);
D O I
10.1109/SENSORS60989.2024.10784707
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Iron detection plays a crucial role across various scientific and industrial fields due to its significant impact on health, safety, or product quality. Despite its importance, iron detection raises several challenges, including the need for highly sensitive and accurate measurement techniques. In this paper, we propose a novel iron detection method based on a custom magnetic field camera (MFC) specifically designed for high-resolution and synchronous measurements. The MFC includes an array of 8 x 8 monolithic integrated magnetic sensors with a resolution of 42 nT, enabling the detection of iron, for instance, in food samples or iron particles, in both static and dynamic conditions. Operating at a sampling rate of 110 Hz, this MFC paves the way for new metrological opportunities.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
AKM Semiconductor Inc., 2023, 221000042-E-01 datasheet
[2]   Conditions for efficient on-chip magnetic bead detection via magnetoresistive sensors [J].
Albisetti, E. ;
Petti, D. ;
Cantoni, M. ;
Damin, F. ;
Torti, A. ;
Chiari, M. ;
Bertacco, R. .
BIOSENSORS & BIOELECTRONICS, 2013, 47 :213-217
[3]  
Allen L., 2006, GUIDELINES FOOD FORT
[4]   A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles [J].
Araujo, Jefferson F. D. F. ;
Costa, Mateus C. ;
Louro, Sonia R. W. ;
Bruno, Antonio C. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 426 :159-162
[5]   Medical Imaging of Microrobots: Toward In Vivo Applications [J].
Aziz, Azaam ;
Pane, Stefano ;
Iacovacci, Veronica ;
Koukourakis, Nektarios ;
Czarske, Juergen ;
Menciassi, Arianna ;
Medina-Sanchez, Mariana ;
Schmidt, Oliver G. .
ACS NANO, 2020, 14 (09) :10865-10893
[6]   A Benchmark of Integrated Magnetometers and Magnetic Gradiometers [J].
Brajon, Bruno ;
Gasparin, Enrico ;
Close, Gael .
IEEE ACCESS, 2023, 11 :115635-115643
[7]   Biosensing Using Magnetic Particle Detection Techniques [J].
Chen, Yi-Ting ;
Kolhatkar, Arati G. ;
Zenasni, Oussama ;
Xu, Shoujun ;
Lee, T. Randall .
SENSORS, 2017, 17 (10)
[8]   A review on non-destructive evaluation of construction materials and structures using magnetic sensors [J].
Eslamlou, Armin Dadras ;
Ghaderiaram, Aliakbar ;
Schlangen, Erik ;
Fotouhi, Mohammad .
CONSTRUCTION AND BUILDING MATERIALS, 2023, 397
[9]   Magnetic Particles-Based Analytical Platforms for Food Safety Monitoring [J].
Khan, Reem ;
Rehman, Abdur ;
Hayat, Akhtar ;
Andreescu, Silvana .
MAGNETOCHEMISTRY, 2019, 5 (04)
[10]   Analysis of the resolution of the passive magnetic method on the example of nondestructive testing of steel wire ropes [J].
Mazurek, Pawel ;
Roskosz, Maciej ;
Kwasniewski, Jerzy .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 589