Virtual Monochromatic Imaging of Half-Iodine-Load, Contrast-Enhanced Computed Tomography with Deep Learning Image Reconstruction in Patients with Renal Insufficiency: A Clinical Pilot Study

被引:1
作者
Harashima, Shingo [1 ]
Fukui, Rika [1 ]
Samejima, Wakana [1 ]
Hirose, Yuta [1 ]
Kariyasu, Toshiya [1 ]
Nishikawa, Makiko [1 ]
Yamaguchi, Hidenori [1 ,2 ]
Machida, Haruhiko [1 ]
机构
[1] Tokyo Womens Med Univ, Adachi Med Ctr, Dept Radiol, 4 33 1 Kohoku, Adachi, Tokyo 1238558, Japan
[2] Tama Nagayama Hosp, Nippon Med Sch, Dept Radiol, Tokyo, Japan
关键词
deep learning image reconstruction; dual-energy CT; image quality; iodine load reduction; virtual monochromatic imaging; DUAL-ENERGY CT; SLICE THICKNESS; ANGIOGRAPHY; ABDOMEN;
D O I
10.1272/jnms.JNMS.2025_92-112
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: We retrospectively examined image quality (IQ) of thin-slice virtual monochromatic imaging (VMI) of half-iodine-load, abdominopelvic, contrast-enhanced CT (CECT) by dual-energy CT (DECT) with deep learning image reconstruction (DLIR). Methods: In 28 oncology patients with moderate-to-severe renal impairment undergoing half-iodine-load (300 mgI/kg) CECT by DECT during the nephrographic phase, we reconstructed VMI at 40-70 keV with a slice thickness of 0.625 mm using filtered back-projection (FBP), hybrid iterative reconstruction (HIR), and DLIR; measured contrast-noise ratio (CNR) of the liver, spleen, aorta, portal vein, and prostate/uterus; and determined the optimal keV to achieve the maximal CNR. At the optimal keV, two independent radiologists compared each organ's CNR and subjective IQ scores among FBP, HIR, and DLIR to subjectively grade image noise, contrast, sharpness, delineation of small structures, and overall IQ. Results: CNR of each organ increased continuously from 70 to 40 keV using FBP, HIR, and DLIR. At 40 keV, CNR of the prostate/uterus was significantly higher with DLIR than with FBP; however, CNR was similar between FBP and HIR and between HIR and DLIR. The CNR of all other organs increased significantly from FBP to HIR to DLIR (P < 0.05). All IQ scores significantly improved from FBP to HIR to DLIR (P < 0.05) and were acceptable in all patients with DLIR only. Conclusions: The combination of 40 keV and DLIR offers the maximal CNR and a subjectively acceptable IQ for thin-slice VMI of half-iodine-load CECT. (J Nippon Med Sch 2025; 92: 69 & horbar;79)
引用
收藏
页码:69 / 79
页数:11
相关论文
共 56 条
[1]   Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT [J].
Albrecht, Moritz H. ;
Vogl, Thomas J. ;
Martin, Simon S. ;
Nance, John W. ;
Duguay, Taylor M. ;
Wichmann, Julian L. ;
De Cecco, Carlo N. ;
Varga-Szemes, Akos ;
van Assen, Marly ;
Tesche, Christian ;
Schoepf, U. Joseph .
RADIOLOGY, 2019, 293 (02) :260-271
[2]   Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast [J].
Albrecht, Moritz H. ;
Scholtz, Jan-Erik ;
Huesers, Kristina ;
Beeres, Martin ;
Bucher, Andreas M. ;
Kaup, Moritz ;
Martin, Simon S. ;
Fischer, Sebastian ;
Bodelle, Boris ;
Bauer, Ralf W. ;
Lehnert, Thomas ;
Vogl, Thomas J. ;
Wichmann, Julian L. .
EUROPEAN RADIOLOGY, 2016, 26 (06) :1863-1870
[3]   Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography [J].
Apfaltrer, Paul ;
Sudarski, Sonja ;
Schneider, David ;
Nance, John W., Jr. ;
Haubenreisser, Holger ;
Fink, Christian ;
Schoenberg, Stefan O. ;
Henzler, Thomas .
EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (02) :322-328
[4]   Single-phase dual-energy CT urography in the evaluation of haematuria [J].
Ascenti, G. ;
Mileto, A. ;
Gaeta, M. ;
Blandino, A. ;
Mazziotti, S. ;
Scribano, E. .
CLINICAL RADIOLOGY, 2013, 68 (02) :E87-E94
[5]   Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases [J].
Basree, Mustafa M. ;
Li, Chengnan ;
Um, Hyemin ;
Bui, Anthony H. ;
Liu, Manlu ;
Ahmed, Azam ;
Tiwari, Pallavi ;
McMillan, Alan B. ;
Baschnagel, Andrew M. .
JOURNAL OF NEURO-ONCOLOGY, 2024, 168 (02) :307-316
[6]   Potential Application of Dual-Energy CT in Gynecologic Cancer: Initial Experience [J].
Benveniste, Ana Paula ;
Faria, Silvana de Castro ;
Broering, Gregory ;
Ganeshan, Dhakshina Moorthy ;
Tamm, Eric P. ;
Iyer, Revathy B. ;
Bhosale, Priya .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 208 (03) :695-+
[7]  
Boone JM, 2011, AAPM report 204: Size-specific dose estimates in pediatric and adult body CT examinations
[8]   Improving spatial resolution and diagnostic confidence with thinner slice and deep learning image reconstruction in contrast-enhanced abdominal CT [J].
Cao, Le ;
Liu, Xiang ;
Qu, Tingting ;
Cheng, Yannan ;
Li, Jianying ;
Li, Yanan ;
Chen, Lihong ;
Niu, Xinyi ;
Tian, Qian ;
Guo, Jianxin .
EUROPEAN RADIOLOGY, 2023, 33 (03) :1603-1611
[9]   A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions [J].
Cao, Le ;
Liu, Xiang ;
Li, Jianying ;
Qu, Tingting ;
Chen, Lihong ;
Cheng, Yannan ;
Hu, Jieliang ;
Sun, Jingtao ;
Guo, Jianxin .
BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1118)
[10]   Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications [J].
D'Angelo, Tommaso ;
Cicero, Giuseppe ;
Mazziotti, Silvio ;
Ascent, Giorgio ;
Albrecht, Moritz H. ;
Martin, Simon S. ;
Othman, Ahmed E. ;
Vogl, Thomas J. ;
Wichmann, Julian L. .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1098)