Engineering many-body quantum Hamiltonians with nonergodic properties using quantum Monte Carlo

被引:0
作者
Swain, Nyayabanta [1 ,2 ]
Tang, Ho-Kin [1 ,3 ]
Foo, Darryl Chuan Wei [1 ]
Khor, Brian J. J. [1 ]
Lemarie, Gabriel [4 ,5 ,6 ]
Assaad, Fakher F. [7 ]
Sengupta, Pinaki [1 ,8 ]
Adam, Shaffique [1 ,2 ,9 ,10 ]
机构
[1] Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[3] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[4] Int Joint Res Unit IRL 3654, MajuLab, CNRS UCA SU NUS NTU, Singapore, Singapore
[5] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[6] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[7] Univ Wurzburg, Univ Wurzburg Dresden Cluster Excellence ct qmat, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[8] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[9] Yale NUS Coll, 16 Coll Ave West, Singapore 138527, Singapore
[10] Washington Univ St Louis, Dept Phys, St Louis, MO 63130 USA
关键词
STATISTICAL-MECHANICS; LOCALIZATION; DYNAMICS; CHAOS;
D O I
10.1103/PhysRevB.111.224201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a computational framework to identify Hamiltonians of interacting quantum many-body systems that host nonergodic excited states. We combine quantum Monte Carlo simulations with the recently proposed eigenstate-to-Hamiltonian construction, which maps the ground state of a specified parent Hamiltonian to a single nonergodic excited state of a new derived Hamiltonian. This engineered Hamiltonian contains nontrivial, systematically-obtained, and emergent features that are responsible for its nonergodic properties. We demonstrate this approach by applying it to quantum many-body scar states where we discover a previously unreported family of Hamiltonians with spatially oscillating spin exchange couplings that host scar-like properties, including revivals in the quantum dynamics, and towers in the inverse participation ratio; and to many-body localization, where we find a two-dimensional Hamiltonian with correlated disorder that exhibits nonergodic scaling of the participation entropy and inverse participation ratios of order unity. The method can be applied to other known ground states to discover new quantum many-body systems with nonergodic excited states.
引用
收藏
页数:15
相关论文
共 71 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Exact correlation amplitude for the S=1/2 Heisenberg antiferromagnetic chain [J].
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20) :4573-4581
[3]   Quasiperiodic many-body localization transition in dimension d > 1 [J].
Agrawal, Utkarsh ;
Vasseur, Romain ;
Gopalakrishnan, Sarang .
PHYSICAL REVIEW B, 2022, 106 (09)
[4]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[5]   Coherence generation, symmetry algebras, and Hilbert space fragmentation [J].
Andreadakis, Faidon ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2023, 107 (06)
[6]  
[Anonymous], m9.figshare.28040900, DOI [10.6084/m9.figshare.28040900, DOI 10.6084/M9.FIGSHARE.28040900]
[7]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[8]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[9]   Localization as a consequence of quasiperiodic bulk-bulk correspondence [J].
Borgnia, Dan S. ;
Slager, Robert -Jan .
PHYSICAL REVIEW B, 2023, 107 (08)
[10]   Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models [J].
Bull, Kieran ;
Martin, Ivar ;
Papic, Z. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)