Berry-Esseen bound for complex Wiener-Ito integral

被引:0
作者
Chen, Huiping [1 ,2 ]
Chen, Yong [3 ,4 ]
Liu, Yong [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Baoshan Univ, Sch Big Data, Baoshan 678000, Yunnan, Peoples R China
[4] Jiangxi Normal Univ, Ctr Appl Math, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Berry-Esseen bound; complex Wiener-Ito integral; Fourth Moment Theorem; CENTRAL LIMIT-THEOREMS; PARAMETER-ESTIMATION; STEINS METHOD; ASYMPTOTICS; FREQUENCY;
D O I
10.1142/S0219493725500133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For complex multiple Wiener-Ito integral, we present Berry-Esseen upper and lower bounds in terms of moments and kernel contractions under the Wasserstein distance. As a corollary, we simplify the previously known contraction condition of the complex Fourth Moment Theorem. Additionally, as an application, we explore the optimal Berry-Esseen bound for a statistic associated with the complex-valued Ornstein-Uhlenbeck process.
引用
收藏
页数:28
相关论文
共 40 条
[1]   Maximum likelihood binary detection in improper complex Gaussian noise [J].
Aghaei, Amirhossein S. ;
Plataniotis, Konstantinos N. ;
Pasupathy, Subbarayan .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :3209-3212
[2]   Parameter estimation for the complex fractional Ornstein-Uhlenbeck processes with Hurst parameter H ∈ (0,1/2) [J].
Alazemi, Fares ;
Alsenafi, Abdulaziz ;
Chen, Yong ;
Zhou, Hongjuan .
CHAOS SOLITONS & FRACTALS, 2024, 188
[3]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[4]  
ARATO M, 1962, DOKL AKAD NAUK SSSR+, V146, P747
[5]  
Arato M., 1982, Linear Stochastic Systems With Constant Coefficients: A Statistical Approach
[6]   On the distribution of poles of Pade approximants to the Z-transform of complex Gaussian white noise [J].
Barone, P .
JOURNAL OF APPROXIMATION THEORY, 2005, 132 (02) :224-240
[7]  
Biermé H, 2012, ALEA-LAT AM J PROBAB, V9, P473
[8]  
Campese S, 2015, Arxiv, DOI arXiv:1511.00547
[9]   Multivariate Gaussian approximations on Markov chaoses [J].
Campese, Simon ;
Nourdin, Ivan ;
Peccati, Giovanni ;
Poly, Guillaume .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
[10]   Optimal Rate of Convergence for Vector-valued Wiener-Ito Integral [J].
Chen, Huiping .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 :179-214