Numerical radius inequalities of operator matrices

被引:0
作者
Bhunia, Pintu [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, India
关键词
Numerical radius; Operator norm; Operator matrix;
D O I
10.1007/s13226-025-00792-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose [A(ij)] is an nxn operator matrix, where each A(ij) is a bounded linear operator on a complex Hilbert space H. Among other inequalities, it is shown that w([A(ij)]) <= w([a(ij)]), where [a(ij)] is an nxn matrix with a(ij) = {w(A(ii)) if i=j, min(0 <= t <= 1) & Vert;|A(ij)|(2t)+|A(ji)& lowast;|2t & Vert;(1/2)& Vert;|A(ij)& lowast;|(2(1-t))+|A(ji)|2(1-t)& Vert;(1/2) if i>j, if i>j. This numerical radius bound refines a well known bound by Abu-Omar and Kittaneh [Linear Algebra Appl. 468 (2015), 18-26]. We use these estimates to derive several numerical radius inequalities and equalities for 2x2 operator matrices. Applying these inequalities, we also deduce several numerical radius bounds for a bounded linear operator, the product of two operators and the commutator of operators. In particular, it is shown that w(A) <= min(0 <= t <= )1 (1/2 & Vert;A & Vert;(t)& Vert;|A|(1-t)+|A & lowast;|(1-t)& Vert;), where A is a bounded linear operator on H. This bound refines as well as generalizes the well known bounds.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[2]   Numerical radius inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :421-427
[3]  
Bhunia P., 2022, LECT NUMERICAL RADIU
[4]   Estimates of Euclidean numerical radius for block matrices [J].
Bhunia, Pintu ;
Jana, Suvendu ;
Paul, Kallol .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (02)
[5]  
Bhunia P, 2024, ARCH MATH, DOI 10.1007/s00013-024-02017-6
[7]   Bounds for zeros of a polynomial using numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
[8]   Some improvements of numerical radius inequalities of operators and operator matrices [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10) :1995-2013
[9]   Numerical radius inequalities of operator matrices with applications [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09) :1635-1644
[10]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147