Multiscale Spatial-Temporal Graph Attention Network for fMRI Brain Disease Classification

被引:0
作者
Liang, Yin [1 ]
Jia, Yingchen [1 ]
机构
[1] Beijing Univ Technol, Beijing Artificial Intelligence Inst, Coll Comp Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Diseases; Functional magnetic resonance imaging; Brain modeling; Deep learning; Data mining; Machine learning; Generative adversarial networks; Diffusion tensor imaging; Data models; Artificial intelligence; brain disease classification; functional magnetic resonance imaging (fMRI); graph attention learning; spatial-temporal feature integration; FUNCTIONAL CONNECTIVITY; NEURAL-NETWORK; MRI; PREDICTION;
D O I
10.1109/TIM.2025.3568941
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain disease classification based on functional magnetic resonance imaging (fMRI) has become a hotspot in artificial intelligence research. Considering the graph structure properties of the brain network, graph learning methods have attracted increasing attention in recent work. However, these studies mainly construct a spatial graph on a single scale to represent the brain network, ignoring the complex functional interactions of brain network at multiple scales, as well as the potential of graph learning in temporal feature extraction. To address these issues, this study proposes a novel multiscale spatial-temporal graph attention network (MSTGAT) for fMRI brain disease classification. We design multiscale spatial graph attention learning (MS-GAT) and temporal graph attention learning (T-GAT) modules, in which the former one constructs multiscale topological brain networks to learn and combine high-level spatial functional interactions among brain regions, and the latter one engages time encoding to learn temporal hypercorrelations among different time points. The learned spatial and temporal features are adaptively integrated, and the fused spatiotemporal features are incorporated into multilayer perceptron for brain disease classification. Systematical experiments on three fMRI datasets indicate robust classification performance of our MSTGAT for different classification tasks and brain parcellations, outperforming several state-of-the-art classification methods. Our model demonstrates a better classification accuracy and computational efficiency tradeoff. We also identify important brain regions and connections associated with brain disease classification. Together, this study provides a promising model to effectively learn and integrate complementary features of multiscale topological brain networks and spatiotemporal dynamics from the fMRI data to further promote brain disease classification.
引用
收藏
页数:15
相关论文
共 60 条
[1]  
Awasthi P., 2021, P NIPS, V34, P20385
[2]   Human brain networks in health and disease [J].
Bassett, Danielle S. ;
Bullmore, Edward T. .
CURRENT OPINION IN NEUROLOGY, 2009, 22 (04) :340-347
[3]   The Neuro Bureau ADHD-200 Preprocessed repository [J].
Bellec, Pierre ;
Chu, Carlton ;
Chouinard-Decorte, Francois ;
Benhajali, Yassine ;
Margulies, Daniel S. ;
Craddock, R. Cameron .
NEUROIMAGE, 2017, 144 :275-286
[4]   Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer's Disease With Imaging Genetic Data [J].
Bi, Xia-An ;
Wang, Yu ;
Luo, Sheng ;
Chen, Ke ;
Xing, Zhaoxu ;
Xu, Luyun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) :7420-7434
[5]  
Chen Libiao, 2023, 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), P1856, DOI 10.1109/BIBM58861.2023.10385697
[6]  
Cheng ZQ, 2020, AAAI CONF ARTIF INTE, V34, P3617
[7]   Disease State Prediction From Resting State Functional Connectivity [J].
Craddock, R. Cameron ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) :1619-1628
[8]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging [J].
Du, Yuhui ;
Fu, Zening ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[10]  
Dvornek NC, 2018, I S BIOMED IMAGING, P725, DOI 10.1109/ISBI.2018.8363676