CONTINUAL ROAD-SCENE SEMANTIC SEGMENTATION VIA FEATURE-ALIGNED SYMMETRIC MULTI-MODAL NETWORK

被引:0
作者
Barbato, Francesco [1 ]
Camuffo, Elena [1 ]
Milani, Simone [1 ]
Zanuttigh, Pietro [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Via Gradenigo 6-B, Padua, Italy
来源
2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2024年
关键词
Continual Learning; Multimodal Learning; Semantic Segmentation; Scene Understanding;
D O I
10.1109/ICIP51287.2024.10647930
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
State-of-the-art multimodal semantic segmentation strategies combining LiDAR and color data are usually designed on top of asymmetric information-sharing schemes and assume that both modalities are always available. This strong assumption may not hold in real-world scenarios, where sensors are prone to failure or can face adverse conditions that make the acquired information unreliable. This problem is exacer-bated when continual learning scenarios are considered since they have stringent data reliability constraints. In this work, we re-frame the task of multimodal semantic segmentation by enforcing a tightly coupled feature representation and a symmetric information-sharing scheme, which allows our approach to work even when one of the input modalities is missing. We also introduce an ad-hoc class-incremental continual learning scheme, proving our approach's effectiveness and reliability even in safety-critical settings, such as autonomous driving. We evaluate our approach on the SemanticKITTI dataset, achieving impressive performances.
引用
收藏
页码:722 / 728
页数:7
相关论文
共 25 条
[1]   Multimodal vehicle detection: fusing 3D-LIDAR and color camera data [J].
Asvadi, Alireza ;
Garrote, Luis ;
Premebida, Cristiano ;
Peixoto, Paulo ;
Nunes, Urbano J. .
PATTERN RECOGNITION LETTERS, 2018, 115 :20-29
[2]  
Barbato Francesco, 2023, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P1, DOI 10.1109/ICASSP49357.2023.10096314
[3]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[4]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[5]  
Camuffo E., 2023, CVPRW, P2446
[6]   Recent Advancements in Learning Algorithms for Point Clouds: An Updated Overview [J].
Camuffo, Elena ;
Mari, Daniele ;
Milani, Simone .
SENSORS, 2022, 22 (04)
[7]   Incremental Learning in Semantic Segmentation from Image Labels [J].
Cermelli, Fabio ;
Fontanel, Dario ;
Tavera, Antonio ;
Ciccone, Marco ;
Caputo, Barbara .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :4361-4371
[8]   Modeling the Background for Incremental Learning in Semantic Segmentation [J].
Cermelli, Fabio ;
Mancini, Massimiliano ;
Bulo, Samuel Rota ;
Ricci, Elisa ;
Caputo, Barbara .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9230-9239
[9]   A Unified Point-Based Framework for 3D Segmentation [J].
Chiang, Hung-Yueh ;
Lin, Yen-Liang ;
Liu, Yueh-Cheng ;
Hsu, Winston H. .
2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, :155-163
[10]  
Cortinhal T, 2024, Arxiv, DOI arXiv:2003.03653