TOUGHNESS, FRACTIONAL EXTENDABILITY AND DISTANCE SPECTRAL RADIUS IN GRAPHS

被引:0
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci &Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
关键词
Graph; distance spectral radius; toughness; fractional perfect matching; fractional extendability; MATCHING EXTENSION; EXISTENCE;
D O I
10.4134/JKMS.j240047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is said to be t-tough if S >= t <middle dot> c(G-S) for every subset S subset of V (G) with c(G-S) >= 2, where c(G-S) denotes the number of connected components in G-S. A graph G is fractional k-extendable if every k-matching in G can be extended to a fractional perfect matching of G. In this paper, we first establish an upper bound on the distance spectral radius of G to ensure that G is a t1-tough graph. Then we give an upper bound on the distance spectral radius of G to guarantee that G is a t-tough graph. Finally, we show an upper bound on the distance spectral radius of G to guarantee that G is a fractional k-extendable graph.
引用
收藏
页码:601 / 617
页数:17
相关论文
共 49 条
[1]   Matching extension and minimum degree [J].
Ananchuen, N ;
Caccetta, L .
DISCRETE MATHEMATICS, 1997, 170 (1-3) :1-13
[2]   Proximity, remoteness and distance eigenvalues of a graph [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
DISCRETE APPLIED MATHEMATICS, 2016, 213 :17-25
[3]   Distance spectra of graphs: A survey [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 :301-386
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[6]   TOUGHNESS AND THE EXISTENCE OF K-FACTORS [J].
ENOMOTO, H ;
JACKSON, B ;
KATERINIS, P ;
SAITO, A .
JOURNAL OF GRAPH THEORY, 1985, 9 (01) :87-95
[7]   Toughness, hamiltonicity and spectral radius in graphs [J].
Fan, Dandan ;
Lin, Huiqiu ;
Lu, Hongliang .
EUROPEAN JOURNAL OF COMBINATORICS, 2023, 110
[8]  
Fan DD, 2022, Arxiv, DOI arXiv:2211.09304
[9]   The spanning k-trees, perfect matchings and spectral radius of graphs [J].
Fan, Dandan ;
Goryainov, Sergey ;
Huang, Xueyi ;
Lin, Huiqiu .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) :7264-7275
[10]   A sufficient condition for a graph to be fractional ( k , n )-critical [J].
Gao, Wei ;
Wang, Yiqiao ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2024, 347 (06)